
Rexx Reference
Manual (TSO)

by David Grund Sr.

Page [2]

Rev 5 - November 15, 1998
Rev 4 - August 10, 1998
Rev 3 - June 20, 1998
Rev 2 - June 15, 1998
Rev 1 - May 24, 1998

Page [3]

Table of Contents

TABLE OF CONTENTS ..3

REXX REFERENCE MANUAL (TSO)...7

SECTION I - REFERENCE ...9

GENERAL RULES..11
ABBREV ..13
ABS ..14
ADDRESS...15
APOSTROPHES ...17
ARG..17
ASSIGNMENT STATEMENT..18
BITAND ..19
BITOR...20
BITXOR ..21
B2X..23
CALL ..24
CALL ON ...25
CENTER/CENTRE ...26
CLIST..27
COMMA...28
COMMENTS ...29
COMPARE..30
COMPARISON OPERATORS ..31
CONCATENATION ..32
CONDITION ...33
CONTINUATION ...34
COPIES ..35
C2D..36
C2X..37
DATATYPE ..38
DATE ..39
DELSTACK ..40
DELSTR ..41
DELWORD ..42
DIGITS ..43
DO ..44
DROP ..47
D2C..48
D2X ...49
END ..50
ERRORTEXT ..51
EXECIO ..52
EXIT ...56
EXPOSE ...57
EXTERNAL ..58
FIND ...59
FORM..60
FORMAT..61
FUZZ ...62

Page [4]

IF..63
IF, COMPOUND ..65
IF-THEN-DO ..66
INDEX ...67
INSERT ..68
INTERPRET ..69
ITERATE ..70
JUSTIFY...71
LABELS ...72
LASTPOS ...73
LEAVE...74
LEFT ...75
LENGTH ..76
LINESIZE...77
LISTDSI..78
LITERALS ..82
LOGICAL OPERATORS ..83
MATH ...84
USAGE ..84
MAX ...85
MIN ..85
MSG..86
NEWSTACK ...87
NOP ...88
NUMERIC ..89

Numeric Digits...89
Numeric Form..90
Numeric Fuzz...91

OPERATORS...93
OUTTRAP ..94
OVERLAY ..95
PARSE ...96
POS...101
PROCEDURE...102
PROMPT ..103
PULL ...105
PUSH...106
QSTACK..107
QUEUE ..108
QUEUED ..109
QUOTATION MARKS/APOSTROPHES ..110
RANDOM ...111
RC..112
RESULT ...113
RETURN ..114
REVERSE ...115
RIGHT ...116
SAY ..117
SELECT ...118
SEMI-COLON ...119
SIGL..121
SIGN ...122
SIGNAL ...123
SIGNAL ON..124

Page [5]

SOURCELINE ...125
SPACE ...126
STACK...127
STRIP ..129
SUBCOM ...130
SUBSTR...131
SUBWORD...132
SYMBOL..133
SYSDSN ..134
SYSVAR..135
TIME ...136
TRACE ..138
TRANSLATE...139
TRUNC ..141
UPPER ...142
USERID...143
VALUE ..144
VARIABLES..145
VARIABLES, COMPOUND ..146
VERIFY ...147
WORD...148
WORDINDEX ...149
WORDLENGTH ..150
WORDPOS ...151
WORDS ...152
XRANGE ...153
X2C..154
X2D ...155
INSTRUCTIONS NOT COVERED..156

SECTION II -A STARTER REXX TUTORIAL ...157

SECTION III - REXX EXAMPLES...159

ALLOCEIO - ALLOCATE O/P DATASET; WRITE ARRAY TO IT..162
CAPTSO - CAPTURE TSO COMMAND OUTPUT ...163
CHGBLKC - INSERT A COBOL CHANGE BLOCK ..164
CHGDATA - MODIFY A DATA FILE..165
CHGSTEP - CHANGE STEPS IN JCL ...168
COMMANDS - LIST AVAILABLE COMMANDS...169
COMPCO - COMPARE TWO FILES OF ORDER NUMBERS..170
COMPDS - COMPARE TWO SEQUENTIAL DATASETS ..172
COMPDSE – COMPARE TWO SEQUENTIAL DATASETS - ENHANCED..173
COMPPDS - COMPARE TWO PDS'S ...175
CONCATL - CONCATENATE LIBRARIES ...178
CPDSIX – COMPARE TWO PDS INDEXES...179
DD - ADD A DD STATEMENT...182
DELDUPS - DELETE DUPLICATE RECORDS..184
DURATION - TIME AN EXEC ..185
FINDMEM - FIND A MEMBER IN A CONCATENATION ..186
FIXJCL - FIX JOB CONTROL ...189
FX - FILE NAME CROSS-REFERENCE ..204
HD - HEX DUMP..209
INIT - ESTABLISH MY TSO ENVIRONMENT...212
INITSPF - ESTABLISH MY ISPF ENVIRONMENT ..213

Page [6]

JOBCARD - CREATE A JOBCARD ...214
JUMBLE - DISPLAY ALL COMBINATIONS OF LETTERS ..215
LA - LIST TSO ALLOCATIONS..236
LAE - ISPF EDIT MACRO FOR LA ..236
LOTTERY - PICK LOTTERY NUMBERS ..238
LISTDSI - LIST DATASET INFORMATION...240
LPDSIX - LIST A PDS INDEX TO A SEQUENTIAL FILE..241
PROCSYMS - PERFORM SYMBOLIC SUBSTITUTION..243
PTS - PDS-TO-SEQUENTIAL; MEMBER NAME IS PREFIX..247
PTS2 - PDS-TO-SEQUENTIAL; MEMBER NAME IS INSERTED ...249
REXXMODL - REXX EXEC MODEL ..252
SCALE - DISPLAY A SCALE ...253
SDN - SORTED DIRECTORY W/NOTES: DIRECTORY ANNOTATOR ...254
SHOWDUPS - SHOW DUPLICATES ..257
STACK - START ANOTHER ISPF SESSION ...258
TIMEFMTS - SHOW ALL TIME FORMATS ...259
TIMETOGO - DISPLAY TIME UNTIL AN EVENT ..260

SECTION IV - THE REXX ENVIRONMENT..261

ESTABLISHING YOUR REXX ENVIRONMENT..263
USING REXX WITH ISPF...264
USING REXX IN THE BACKGROUND (BATCH JOBS) ..266
DEBUGGING YOUR REXX PROGRAM...267

Interactive Trace Mode..267
TRAPPING ERRORS...268
SIGNAL ON CONDITION...268
SIGNAL OFF CONDITION..268
CALL ON CONDITION NAME SUBROUTINENAME ...268
CONDITION ...268
EXAMPLES...269

APPENDIX..272

REXX INSTRUCTIONS..272
REXX FUNCTIONS...272
TSO EXTERNAL FUNCTIONS...272
TSO COMMANDS ...272
OTHER REXX REFERENCES ...273

Page [7]

Rexx Reference Manual (TSO)

Rexx is the Restructured Extended Executor Language. New with TSO/E version
2, Rexx is a high-level procedural language that allows programmers to mix instructions
with TSO commands, and build high-powered tools and utilities, called “exec”s.

Rexx is a programming language. Rexx is a fascinating language. It is, from my
viewpoint, IBM's answer to Basic. It is an English-like interpreted language. No compiler
is needed. The computer reads the instructions, one at a time, and if it can interpret it, it
will execute it.

The thing that Rexx is best suited for is to create data-manipulation tools,
especially for one-time use or for development. Once you learn how to use the language,
you can tailor data in ways you never dreamed.

Why learn Rexx? Knowing Rexx can give you a powerful advantage. Being able to
manipulate data in esoteric and creative ways can be a tremendous aid to your
productivity. Rexx can be very useful for creating and verifying test data, formatting
output data, file-integrity-checking, and creating tools that help make your job easier.

A Rexx program can be written far more quickly than one for COBOL or
Assembler, for the same task at hand. You wouldn't want to use Rexx in production for
high-volume files, though. That's the job of a compiled program. Rexx is for the "quickie",
and low-volume tasks.

The reason I decided to write this book, is that with the reference I was using, it
took too long to find information that I was looking for. The author of that book knew his
stuff, but I felt he had no clue as to what to present, or how to present it. The organization
of that book and lack of meaningful examples was frustrating, and simply not acceptable.

This reference discusses Rexx and its use with TSO, as opposed to CMS or
personal computers. The intended audience for this book is all levels of mainframe
programmers, and "computer-literate" users. You should be at least familiar with TSO,
have a TSO UserID, and be able to log on to a mainframe.

I wrote this from the point of view of a Rexx user, and not a teacher. While I was
writing this, I envisioned real-life situations that I could find myself in, and I then tried to
illustrate the best way to handle it. The examples were not written for the sake of example;
they were written to show how to solve a given problem. I added many examples from my
real-life work experience. These are execs that I used to solve real problems.

So it is my hope that this reference is easy to use, has useful and pertinent
examples, and can help you get your job done. This manual is the quickest way to get up,
running, and productive in Rexx.

Page [8]

All of the examples in this book have been tested on an IBM mainframe, on
Rexx370 Vers 3.48 01 May, 1992. Any errors resulting in the use of these examples
would probably then be due to environmental differences, or the transfer of the example
from this document.

If there is something about this book that really bugs you, or really pleases you, or
if you have any other comments, criticisms, or suggestions, please feel free to e-mail me
at: dgrundsr@earthlink.net.

This book is divided into five sections.

The first section is a reference, for the experienced programmer. I put this section
first because I feel that this will be the one that is used the most. With this format, you
don't have to worry about whether a Rexx component is a function, instruction, or
anything else. Just flip through the alphabetically-sorted reference, find the keyword, read,
and use!

The second section of this book is a short Rexx tutorial. This is where the beginner
should start.

The third section of this book will be examples: useful examples.

The fourth section of this book will be on the Rexx environment: how to establish
and maintain it, and how to use it alone, and in conjunction with ISPF.

The fifth section of this book, the appendix, contains lists of instructions by class,
and other Rexx references.

Page [9]

Section I - Reference

Page [10]

Page [11]

General Rules

Form: The Rexx language is generally free-form. You can put any number of
spaces between instructions, operands, etc.

The elements of a Rexx exec are: Rexx instructions, Rexx functions, TSO
external functions, and TSO commands.

There elements generally end at the end of a line or at the beginning of a
comment, whichever comes first. They can be stacked on the same line if
separated by semi-colons.

First Line: A Rexx exec is identified by the character string "REXX" (no quotation
marks) in the first line of the exec. Generally, it is recommended to start a
Rexx exec off with a comment stating the name, short description, and
"REXX" keyword, as follows:
/* MyFirst - MyFirst Rexx Program */ or
/* Calc1 - My Calculator Rexx */

Rexx is also case-insensitive. Use upper- or lower-case letters at your discretion.
Note, however, that some functions look at the case of letters!

All values that appear in Rexx statements are translated to upper case unless they
are enclosed in matching apostrophes or quotation marks.

In some cases, not all of the operands of an instruction are discussed. There are
some operands that are highly esoteric, that I feel will be needed only in extremely specific
situations. The appendix contains information on additional Rexx reference material.

Page [12]

Page [13]

Abbrev

Purpose: Return a 1 (TRUE) or zero (FALSE) based on the test that a word begins
in a certain string. It is a subtle variation of the LEFT function.

Type: Rexx Function

Syntax: Result = ABBREV(word,string,length)

Usage: If the first length characters of word = string, then result will be TRUE.

Examples: Result = ABBREV("America","Am",2)
/* TRUE; Result = 1 */

Result = ABBREV("America","mer",3)
/* FALSE; Result = 0 */

Page [14]

Abs

Purpose: Return the absolute value of a number: drop the sign, and format according
to the current setting of NUMERIC DIGITS.

Type: Rexx Function

Syntax: NewNum = ABS(OldNum)

Example: NewNum = ABS(-436)
NewNum will be 436.

Page [15]

Address

Purpose: Return or change the setting of the environment that is currently receiving
commands

Type: Rexx Function and Rexx Instruction

Syntax: 1) Address Environ string (instruction)
2) Environ = Address() (function)

Usage: Rexx passes to the environment any strings that are enclosed in quotation
marks (or apostrophes), or any that it does not know what to do with.
1) The instruction form sets the environment that will receive these strings

that are fed through by Rexx. This setting is "permanent" (for the
duration of the current exec), unless it is supplied on the same line. If it
is, then the setting that is specified is valid only for the string on that
line. Rexx doesn't care what you set the environment to at the time you
use this instruction. There is no validation at this point. The default is
"TSO".

2) The function form simply returns the current environment setting

See Also: SubCom

Example 1: The following Rexx exec illustrates the use of the Address function and the
Address instruction.
Say "Environ = " Address()
Address TSO
Say "Environ = " Address()

 Address ISPEXEC
Say "Environ = " Address()

 Address MVS
Say "Environ = " Address()

 Address Junk
Say "Environ = " Address()

 Address Dave
Say "Environ = " Address()

Will display:
Environ = TSO
Environ = TSO
Environ = ISPEXEC
Environ = MVS
Environ = JUNK
Environ = DAVE

Page [16]

Example 2: The following Rexx exec illustrates the effects of the use of Address:
1 "Browse Dataset(Rexx.Exec) "
2 address ispexec
3 "Browse Dataset(Rexx.Exec) "
4 address ispexec "Edit Dataset(Rexx.Exec) "

Explanation of the above exec:
1 This is a character string that Rexx does not understand, so Rexx passes
it to the environment. Since the environment was not set, it remains as
"TSO". TSO, in turn, does not know what to do with this character string,
so the following displays:
COMMAND BROWSE NOT FOUND
 3 *-* "Browse Dataset(Rexx.Exec) "
 +++ RC(-3) +++

2 Rexx now sets the environment to "ISPEXEC" (the name for ISPF's
environment).
3 ISPF receives this character string, and knows what to do with it, so it
opens the dataset called "Rexx.Exec" for Browse.
4 This line is setting the environment at the same time as sending the string.
ISPF then edits a dataset called "Rexx.Exec".

Example 3: This exec demonstrates the "temporary" environment setting.
1 address TSO
2 address ispexec "Edit Dataset(Rexx.Exec) "
3 "Browse Dataset(Rexx.Exec) "
4 address ISPEXEC
5 "Edit Dataset(Rexx.Exec) "

In the above exec,
Line 1 sets the environment to "TSO"
Line 2 will edit "Rexx.Exec", having set the environment temporarily to
ISPEXEC.
Line 3 will err, because TSO does not recognize the command:
COMMAND BROWSE NOT FOUND

 5 *-* "Browse Dataset(Rexx.Exec) "
 +++ RC(-3) +++

Line 4 will set the environment to ISPF
Line 5 will edit the dataset successfully.

Page [17]

Apostrophes

Purpose: To enclose a literal (character string).

See "Quotation Marks/Apostrophes" for documentation on this function.

Arg

Purpose: Retrieve data from the TSO command line.

Type: Rexx Function and Rexx instruction

See "Parse" for documentation on this function.

Page [18]

Assignment Statement

Purpose: To assign a value to a variable. The value you assign to the variable can be
any type: character, number, hex, binary, etc.

Syntax: Variable = ValueFormat
Variable The name of the variable being assigned. It can be

up to 250 characters long, but I don't know why
you would want to do that to anyone.

Value The value that you are assigning to the variable
Format The representation of the value. The default is

character. Valid values are "X" for hexadecimal,
and "B" for binary.

Examples: A = 1 assigns the value '1' to the variable 'A'
B = "F1F2F3F4"x assigns the value '1234' to variable 'B'
C = '11110010'B assigns the value '2' (X'F2') to C

Page [19]

BitAnd

Purpose: Return a string that is the result of two strings that were logically AND'd
together.

Type: Rexx Function

Syntax: Result = BitAnd(string1,string2,padString)
String1 and String2 are the strings used in the AND operation.
padString is a string used for padding

Usage: To AND two strings is to multiply the bits of one string to the
corresponding bits of the other string, and return the result. In English, it
reads, "If the bit of the first string AND the corresponding bit of the second
string are both on, then the resulting bit will be on. Otherwise, the resulting
bit will be off."

padString is used to fill the shorter of the two strings (on the right) so the
strings are the same length when being processed. If no padString is
supplied, the operation works only for the length of the smaller string.

The sole purpose this function has is to do bit-level manipulation.

This function is the opposite of BitOr.

Example 1 The following example will convert a one-character reply from upper-case
to lower case, by virtue of turning off bit 1:
ResultString = BitAnd('Y','10111111'B)
Say ResultString

The upper case 'Y' is X'E8', or B'11101000'.
The lower case 'y' is X'A8', or B'10101000'.

Example 2 The following example will convert all letters of a string to lower case
(taking the above example a step further).
Sentence = "The Quick Brown Fox Jumps Over The Lazy White
Dog"
ResultString = BitAnd(Sentence,'10111111'B,'10111111'B)

Example 3 The following example does the exact same thing.
Sentence = "The Quick Brown Fox Jumps Over The Lazy White
Dog"
ResultString = BitAnd(Sentence,'BF'X,'BF'X)

Notice that the coding in this example is a little shorter, but not as clear to
the reader: a binary 10111111 equals a hexadecimal BF. I prefer example 2
to example 3 because it is clearer.

Page [20]

BitOr

Purpose: Return a string that is the result of two strings that were logically OR'd
together.

Type: Rexx Function

Syntax: Result = BitOr(string1,string2,padString)
String1 and String2 are the strings used in the OR operation.
padString is a string used for padding

Usage: To OR two strings is to add the bits of one string to the corresponding bits
of the other string (with no carry), and return the result. In English, it
reads, "If either the bit of the first string OR the corresponding bit of the
second string are on, then the resulting bit will be on. Otherwise, the
resulting bit will be off."

padString is used to fill the shorter of the two strings (on the right) so the
strings are the same length when being processed. If no padString is
supplied, the operation works only for the length of the smaller string.

The sole purpose this function has is to do bit-level manipulation.

This function is the opposite of BitAnd.

Example 1 The following example will convert a one-character reply from lower-case
to upper case, by virtue of turning on bit 1:
ResultString = BitOr('y','01000000'B)

The lower case 'y' is X'A8', or B'10101000'.
The upper case 'Y' is X'E8', or B'11101000'.

Example 2 The following example will convert all letters of a string to upper case
(taking the above example a step further).
Sentence = "The Quick Brown Fox Jumps Over The Lazy White
Dog"
ResultString = BitOr(Sentence,,'01000000'B)

String2 is padded to the length of Sentence with binary '01000000'.

Example 3 The following example does the exact same thing.
Sentence = "The Quick Brown Fox Jumps Over The Lazy White
Dog"
ResultString = BitOr(Sentence,,'40'X)

Notice that the coding in this example is a little shorter, but not as clear to
the reader: a binary 01000000 equals a hexadecimal 40. I prefer example 2
to example 3 because it is clearer.

Page [21]

BitXOr

Purpose: Return a string that is the result of two strings that were logically XOR'd
together.

Type: Rexx Function

Syntax: Result = BitXOr(string1,string2,padString)
String1 and String2 are the strings used in the AND operation.
padString is a string used for padding

Usage: To XOR two strings is to compare the bits of one string to the
corresponding bits of the other string, one, by one, and return the result of
the compare. In English, it reads, "If the bit of the first string AND the
corresponding bit of the second string are the same, then the resulting bit
will be off. Otherwise, the resulting bit will be turned on.

padString is used to fill the shorter of the two strings (on the right) so the
strings are the same length when being processed. If no padString is
supplied, the operation works only for the length of the smaller string.

If you XOR something to itself, the result will be hex zeroes.

The sole purpose this function has is to do bit-level manipulation.

You can use this instruction to do some rudimentary character-string
encryption. See the example below.

Example 1 The following example will demonstrate the effect of this function.
ResultString = BitXOr('11111111'B,'01010101'B)
Say C2X(ResultString)

String1: 11111111
String2: 01010101
Result: 10101010 (X'AA')

Example 2 This example will further demonstrate the effect of this function.
ResultString = BitXOr('10101010'B,'01010101'B)
Say C2X(ResultString)

String1: 10101010
String2: 01010101
Result: 11111111 (X'FF)'

Page [22]

Example 3 This example demonstrates how to encrypt a character string. Use the
exact same instruction to decrypt it.
Sentence = "The quick brown fox jumps over the lazy white
dog"
Say Sentence
Sentence = BitXOr(Sentence,,'BF'X)
Say Sentence
Sentence = BitXOr(Sentence,,'BF'X)
Say Sentence

Displays:
The quick brown fox jumps over the lazy white dog
*:::::::::::: :::::::::::::::::¤:::::::: ::¤:::::
The quick brown fox jumps over the lazy white dog

Page [23]

B2X

Purpose: Convert a binary string to a hexadecimal representation

Type: Rexx Function

Syntax: Result = B2X(binarystring)
Result is the hexadecimal representation of binarystring, which is a string
of zeroes and ones.

Usage: Convert a binary to a hexadecimal number

Example 1 The following exec:
Say "B2X('11101111')=" B2X('11101111')

Will display the following:
B2X('11101111')= EF

Page [24]

Call

Purpose: To invoke, or transfer control to a subroutine or program, expecting to
come back.

Type: Rexx Instruction

Syntax: Call subroutine
Call program

Usage: A Call is used to facilitate structured programming. It is widely used to
break the mainline processing up into blocks of code that are referenced by
the mainline section. A lot of the examples illustrate structured
programming and the use of Calls.

To call a Rexx exec or Clist implicitely, simply issue an "Address TSO"
command, followed by the name of the Rexx exec or Clist, on separate
lines.

Example: Call Proc01 /* Call program section 1 */

Proc01:
{code}
{code}

Return

The following code snippet is part of an exec that compares two disk files:
"Address TSO"
"Call 'SYS1.LINKLIB(IEBCOMPR)'"
If RC = 0 then
 Say "The modules are identical"

Page [25]

Call On

Purpose: Establish a subroutine to handle an error condition

Type: Rexx Instruction

Syntax: Call On condition

See "Trapping Errors" in the Environment section of this manual for a
discussion of this instruction.

Page [26]

Center/Centre

Purpose: To center a string within a larger string

Type: Rexx Function

Syntax: Center(string,length,pad)

Usage: Center string within a larger string of length characters. If pad is present, it
will be used as the pad character. If it is not, spaces will be used.

This function can be specified as either “Center” or “Centre”.

Example: The following excerpt of a Rexx Exec
Heading = "Tuesday"
Field = Center(heading,30,'-')
Say Field

will result in
-----------Tuesday------------

Page [27]

Clist

Purpose: Run a TSO command list the "old" way. This is what was used to
accomplish the functions that Rexx Execs accomplish today.

Clists are mentioned here only because of their history and effect on today's Rexx
language. I am in no way advocating using them. Anything you could do with a Clist can
be accomplished with a Rexx exec, and usually cleaner.

Clists and Rexx execs alike are typically stored in a PDS (partitioned dataset). A
Clist library is allocated to the DDName SYSPROC, while a Rexx exec library is allocated
to the DDName SYSEXEC.

Page [28]

Comma

Purpose: To continue a Rexx statement

Example: The following Rexx Exec:
/* T1 - Example Rexx Program */
JanuarySales = 100
FebruarySales = 150
MarchSales = 5
AprilSales = 15
MaySales = 10
Total = JanuarySales + FebruarySales + ,
MarchSales + AprilSales + MaySales
Say 'The total sales = ' Total

will produce the result "280". Notice the continuation comma after
FebruarySales.

Page [29]

Comments

Purpose: To document an exec, or annotate the lines within.

Syntax: Start with /* and with */. They can span any number of lines, but cannot be
nested (supplied within another set).

Usage: Typically, you would comment each block of code with a comment line
preceding that block of code. If you wish to comment one particular line,
code the comment to the right of that line.

Example: /* This is a Rexx comment */
Say "Hello, World" /* This is also a Rexx comment */

A = 1 /* Set the value of A to 1 */
B = 2 /* Set the value of B to 2 */
/* C = 3 */ /* This instr was commented out */
D = 4 /* Set the value of D to 4 */

Page [30]

Compare

Purpose: Compare two strings

Type: Rexx Function

Syntax: Result = COMPARE(string1,string2,pad)

Usage: Compare two strings, and return the number of the position where the
inequality between the two strings starts. If the strings are equal, there is no
inequality, and so the function returns a zero.

When one string is shorter than the other, it is first padded on the right with
the pad character. The default pad character is a space.

Characters within quotation marks are treated with respect to their case.
An upper-case letter will not equal a lower-case one.

Example: Result = COMPARE("Apples","Oranges")
Say Result

Will yield 1, because the first position is unequal.

Result = COMPARE("Apples","Apple")
Say Result

Will yield 6, because the sixth position of the first string, "s", is unequal to
the sixth position of the second string, which was padded to a blank.

Result = COMPARE("Apples","Apples ")
Say Result

Will yield 0, because the strings after padding are identical.

Result = Compare("Applesssssssss","Apples","s")
Say Result

Will yield 0, because the strings after padding are identical.

Page [31]

Comparison Operators

REXX comparison operations resolve to a 1 if the result of the comparison is true, and a 0
if the result of the comparison is false. REXX also uses an equality concept called 'strictly
equal'.

Two values are 'strictly equal' if they match exactly, including imbedded blanks and the
case of letters. Two values are 'equal' if they don't match exactly, but they resolve to the
same quantity after REXX substitution and evaluation.

The following comparison operators can be used in REXX expressions:
== strictly equal
= equal
\== not strictly equal (can also use not sign, X'5F')
\= not equal (can also use not sign, X'5F')
> greater than
< less than
>< greater than or less than (same as not equal)
>= greater than or equal to
<= less than or equal to
\< not less than
\> no greater than

REXX Comparison Operators Order of Precedence:
\ - (not)
|| - concatenation
& - AND
| && - logical OR and EXCLUSIVE OR

Page [32]

Concatenation

Purpose: To combine two or more strings or literals into one variable.

One way concatenation is achieved by the use of "Or" bars. These are the
vertical bars that can be found on the keyboard to the right of the +/= key.
This is the preferred way, since it is explicit. If you use this method, all
blanks between the two values that are being concatenated will be
suppressed. If you want spaces between your variables, you must
concatenate them as well. See example 1 below.

Another way to achieve concatenation is to simply put two variables of
different types next to each other (juxtaposition). (Note that juxtaposition
is accomplished by simply not using the "or" bars). Two or more
intervening blanks will be compressed down to one. Again, if you want
spaces between your variables, you must concatenate them as well. See
example 2 below.

In summary, us the "Or" bars if you wish to strip out all intervening spaces.
Use juxtaposition if you wish to keep just 1.

Examples using
"Or" bars:

Say "Example 1" || "Hello World"
Say "Example 1" || "Hello World"
Say "Example 1"||"Hello World"

All of the above will result in the same thing:
Example 1Hello World

Notice that all intervening spaces were removed by Rexx.

Say "Example 1"||" "||"Hello World"

will result in:
Example 1 Hello World

Notice the intervening space (between "1" and "Hello").

Examples using
juxtaposition:

Say "Example 2""Hello World"

Notice that in this example, there is no legitimate concatenation. The
quotation marks intended to define literals (variables of the same type).
Instead, Rexx interpreted this as one string, and by its rules, translated two
quotation marks into one.

Say "Example 2" "Hello World"
Say "Example 2" "Hello World"

Both of the above examples will result in:
Example 2 Hello World

Page [33]

Condition

Purpose: Retrieve the setting information for the currently trapped REXX condition.

Type: Rexx Function

Syntax: String = CONDITION('code')
String is the returned setting. Code is supplied to request the type of
information. The default is I.
Codes:
C- Return the name of the current condition
D- Return the descriptive string associated with the condition
I- Return the name of the actual instruction that was executing when the
condition occurred
S- Return the status of the condition trap. This will be either ON, OFF, or
DELAY.

Usage: This function is used in error trapping.

Example: In the following exec, we try to add Increase to Salary, neither of which
has been defined:
Signal On NoValue
Salary = Salary + Increase
Say "My salary = " Salary
exit
NoValue:
Say "Undefined variable on line" SIGL
Say "The current trapped condition is"
condition("C")
Say "The variable is" condition("D")
Say "The name of the instruction is"
condition("I")
Say "The instruction is:" sourceline(SIGL)
Say "The status of the condition trap is"
condition("S")

Will result in the following display
Undefined variable on line 4
The current trapped condition is NOVALUE
The variable is SALARY
The name of the instruction is SIGNAL
The instruction is: Salary = Salary + Increase
The status of the condition trap is OFF

Page [34]

Continuation

Purpose: To code an instruction that requires more than one line.

Syntax: Instructions are continued with a comma.

See Comma for documentation on this subject.

Page [35]

Copies

Purpose: Copies a string to itself a specified number of times.

Type: Rexx Function

Syntax: Result = COPIES(string,quantity)

Usage: Set result to quantity sets of string.

Example: Line = COPIES('*',75)
Will result in the variable "Line" containing 75 asterisks.

Page [36]

C2D

Purpose: Convert a string to its decimal equivalent

Type: Rexx Function

Syntax: Result = C2D(string)

Usage: Internally, the function first converts the string to its hexadecimal
equivalent. Then it converts that hexadecimal value to decimal. It is the
inverse of D2C.

Example: result = C2D(" ") /* Two spaces */
After execution of the previous instruction, result will contain 16448, the
decimal representation of X'4040'

result = C2D("6")
result will contain 246, the decimal representation of X'F6'

Page [37]

C2X

Purpose: Convert a string to its hexadecimal equivalent

Type: Rexx Function

Syntax: Result = C2X(string)

Example: result = C2X(" ") /* Two spaces */
result will contain 4040

result = C2D("6")
result will contain F6

Page [38]

DataType

Purpose: This is a Rexx built-in function that will allow you to test to see the type of
data a variable contains. There are two forms of this function.

Type: Rexx Function

Syntax 1: Result = DATATYPE(string)
If string was a number, result would contain "NUM". Otherwise, it would
contain "CHAR".

Syntax 2: Result = DATATYPE(string,type)
Using this form, result will contain a one (TRUE) if string corresponds to
type. Otherwise, it will contain a zero (FALSE).

Types:
Type Description
A Alphanumeric: A-Z, a-z, 0-9
B Binary: 0 or 1 only
D Double-byte character set
L Lower-case letters
M Mixed-case letters
N Number
S Symbol: valid Rexx symbol
U Uppercase letters
W Whole number
X Hexadecimal number: 0-9, A-F

Examples: The following excerpt:
If datatype("Dave",M) then

Say "Dave is mixed case"
else

Say "Dave is not mixed case"

will display:
Dave is mixed case

Page [39]

Date

Purpose: This is a REXX built-in function that will provide you with the current
date, in a variety of different formats.

Type: Rexx Function

Syntax: Result = DATE(option)
Based on the specification of the Options below, "result" will contain the
date in the corresponding format, if the current date was April 8, 1997:

Usage: see the chart below

Option Meaning Format Example
(blank)
N

European dd Mmm yyyy 8 Apr 1997

B Basedate: Number of complete days
since January 1, of the year 1.

nnnnnn 729121

C Century: Number of days in this century nnnnn 35527
D Days: Number of days so far this year nnn 98
E European dd/mm/yy 08/04/97
J Julian date yyddd 97098
M Name of the current month Mmmmmmmm April
O Ordered, suitable for sorting yy/mm/dd 97/04/08
S Ordered, suitable for sorting yyyymmdd 19970408
U USA format mm/dd/yy 04/08/97
W Name of current weekday Dddddddd Tuesday
option is not case sensitive. You can use either upper or lower case.

Examples: If today was April 8, 1997:
Today's date is date()

will yield:
Today's date is 8 Apr 1997

Today is Date(M)

will yield:
Today is April

Page [40]

DelStack

Purpose: To delete the most recently-created TSO stack in preparation for use of it.

Type: TSO Command

Syntax: DELSTACK

Usage: Use this instruction right before you begin adding items to the TSO stack.
This ensures that you don't inadvertently process data that was left on the
stack by a previous program.

This is typically used in conjunction with the (Parse) Pull instruction.

Page [41]

DelStr

Purpose: Delete characters from a string

Type: Rexx Function

Syntax: Newstring = DELSTR(string,start,length)

Usage: Remove characters from string starting with position start, and for a length
of length. The resulting string will be placed in newstring. The default for
length is the entire remainder of the string.

Example:
Result = DELSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZ",3,20)

After execution of this instruction, result will contain "ABWXYZ".

Page [42]

DelWord

Purpose: Delete words from a string

Type: Rexx Function

Syntax: Newstring = DELWORD(string,start,quantity)

Usage: Remove quantity words from string starting with word number start. The
resulting string will be placed in newstring.

Example:
Result = DELWORD("FourScore and seven years ago, our fathers ",3,4)

After execution of this instruction, result will contain
"FourScore and fathers".

Page [43]

Digits

Purpose: Specify the number of digits that Rexx carries in arithmetic operations
(precision).

Type: Rexx Function

Syntax: Numeric Digits n

See Numeric Digits for documentation on this function.

Page [44]

Do

Purpose: Execute a set of instructions, either under the control of a counter variable,
or based upon current program conditions.

Type: Rexx Instruction

Syntax: DO expression
variable=start
TO limit
BY increment
WHILE expression
UNTIL expression
FOREVER
(one or more statements to execute)

END variable

Usage: There are several formats of the DO instruction. Each of the operands of
the DO instruction as illustrated above are optional.

For the sake of explanation, the instructions in between the DO and END
are commonly referred to as a DO Group.

If no operands are supplied, then the instructions in the DO Group are
executed one time.

expression Any valid REXX expression, but it must resolve to a positive whole
number.
DO 19 Do I = 19

(one or more instructions) (one or more instructions)
END End

Both of the above examples would execute the instructions 19 times.

variable=start
TO limit
BY increment

Choose a control variable, and assign it a start value. This control variable
is incremented by the BY amount on each iteration of the loop. The loop
will stop when the control variable reaches the limit.
Do I = 1 TO UpperLimit BY 1

(one or more instructions)
End

In the above example, I is the control variable. It starts with a value of 1,
and the loop continues until I = UpperLimit.

Page [45]

BY can be a negative number if UpperLimit starts out to be less than the
control variable.

WHILE expression
UNTIL expression

Continue to perform the instructions WHILE or UNTIL the expression is
true. WHILE and UNTIL have opposite connotations. WHILE will test for
a true condition before the do group is executed. UNTIL will test for a true
condition at the end of the do group. Using UNTIL assures you that the do
group will execute at least one time.
Times = 1
StillIn = 'Y'
Do While StillIn = 'Y'

Say "I am working on iteration number "Times
Times = Times + 1
If Times > 5 then StillIn = 'N'

End

Times = 1
StillIn = 'Y'
Do Until StillIn = 'N'

Say "I am working on iteration number "Times
Times = Times + 1
If Times > 5 then StillIn = 'N'

End

The two examples above will produce identical results:
I am working on iteration number 1
I am working on iteration number 2
I am working on iteration number 3
I am working on iteration number 4
I am working on iteration number 5

Notice, however, that the only difference between the two examples is the
expression following the conjunction (WHILE/UNTIL)

If you are in doubt as to which conjuntion to use, then apply the KIS
principle (Keep It Simple). Use the one that makes the code easier to
understand.

FOREVER Execute the do group continuously, until "told" to stop.

END Variable
A control variable name can be supplied to an END statement to clarify
which DO group the END statement refers to.
Do I = 1 to 4

Do J = 1 to 13
(one or more instructions)

End J
End I

Examples:

Page [46]

Do I = 1 to 25
 Say "Hello, world!"

End

The above example will print the message Hello World! 25 times.

Do I = 1 to 0
 Say "Hello, world!"
End

The above example will print nothing, because 0 < 1.

Do I = 1 to 10 by 2
Say "Hello World #"I

End

The above example will print:
Hello World #1
Hello World #3
Hello World #5
Hello World #7
Hello World #9

Do I = 1 to 100 by 2 for 5
Say "Hello World #"I

End

The above example will print:
Hello World #1
Hello World #3
Hello World #5
Hello World #7
Hello World #9

(Only five iterations)

/* Test1 - Example Rexx Program - Rexx EXEC */
Do Forever
 Say "Tell me your name, or enter 0 to quit"
 Pull Answer
 If Answer = "0" then Leave

 Say "You told me that your name was" Answer"
End

The above Rexx exec will echo back whatever you type in, until you enter
a zero :
You told me that your name was HOMER SIMPSON

Caution: Here is a common trap. After a do group completes, your index variable
will be one higher than the limit. In the following example, assume you are
traversing an array of records that you read in from a disk file, and that the
disk file contained 114 records.

Do CurrRecNO = 1 to IPRec.0
 (processing…)
End

At this point, CurrRecNO will contain 115, and not 114.

Page [47]

 Drop

Purpose: "Unassign" a variable. This, in effect, converts a variable name to a literal
(in upper case).

Type: Rexx Instruction

Example: The following excerpt from a Rexx exec:
Greeting = "Merry Christmas"
Say Greeting
Drop Greeting
Say Greeting

Will yield the following results:
Merry Christmas
GREETING

Page [48]

D2C

Purpose: Convert a decimal number to a character.

Type: Rexx Function

Syntax: Result = D2C(number,length)

Usage: Convert the decimal number to its internal hexadecimal format. It is the
inverse of C2D.
Number must be a whole number or a variable containing a whole number.
It must also be non-negative, unless length is specified.
Length is the length of the result, and is optional. If Length is not specified,
Result will be left-zero-suppressed. If Number is negative, then Length is
required.

Example: The expression displays
Say D2C(240) 0 (X'F0')
Say D2C(240,5) 0 (right justified in a 5-

byte field)
Say D2C(80) & (X'50')

Page [49]

D2X

Purpose: Convert a decimal number to a hexadecimal value.

Type: Rexx Function

Syntax: Result = D2X(number,length)

Usage: Convert a decimal number to its hexadecimal representation. It is the
inverse of X2D.
Length- Length of the final result, in characters (optional)

Example: The expression displays
Say D2X(240) F0
Say D2C(80) 50

Page [50]

End

Purpose: Terminate a "DO" loop or block.

See the documentation on Do for more detailed information.

Page [51]

ErrorText

Purpose: This is a REXX built-in function that will return the English language text
for an error code.

Type: Rexx Function

Syntax: Say ErrorText(RC)
where RC is the error code. Error codes are set by all Rexx errors.

Usage: To report back to the user, in English, what the problem is.

Example:
/* Test1 - Example Rexx Program - Rexx EXEC */
Do I = 1 to 20
 Say "Error "I" is "errortext(I)
End

The above Rexx exec will display the following output:
Error 1 is
Error 2 is
Error 3 is Program is unreadable
Error 4 is Program interrupted
Error 5 is Machine storage exhausted
Error 6 is Unmatched "/*" or quote
Error 7 is WHEN or OTHERWISE expected
Error 8 is Unexpected THEN or ELSE
Error 9 is Unexpected WHEN or OTHERWISE
Error 10 is Unexpected or unmatched END
Error 11 is Control stack full
Error 12 is Clause too long
Error 13 is Invalid character in program
Error 14 is Incomplete DO/SELECT/IF
Error 15 is Invalid hexadecimal or binary string
Error 16 is Label not found
Error 17 is Unexpected PROCEDURE
Error 18 is THEN expected
Error 19 is String or symbol expected
Error 20 is Symbol expected

Page [52]

ExecIO

Purpose: Perform input/output operations.

Type: TSO Command

Syntax: "EXECIO quantity operation ddname seq (options"
where
quantity represents the number of records to read or write
operation DiskR for "read from disk"

DiskW for "write to disk"
DiskRU for "read for update"

ddname The ddname of the file for which I/O is to be performed.
The file must be allocated by TSO prior to its use.

seq Sequence number of the desired record, for disk read
operations only

options STEM stem. FINIS
STEM is specified when reading records from or writing records to
an array. stem is the "name" of the array. If STEM is not specified,
operations are performed on a disk file instead of an array.
Specify FINIS to close a disk file when done processing

Usage: If you perform a disk read operation, and you reach end-of-file, RC will be
set to a 2.

Examples:
Read Write Ex # Comments
Disk TSO Stack 1 Read a disk file into the TSO stack
Disk Array 2 Read a disk file into an array
TSO Stack Array 3 Read the TSO stack into an array
TSO Stack Disk 4 Read the TSO stack, write a disk file
Array Disk 5 Read an array, write a disk file
Array TSO Stack 6 Read an array into the TSO stack
Disk Disk N/A Read one disk file; write another:

1) Read disk file into array
2) Write array to disk file

Disk Disk 7 Copy a disk file, one record at a time
Disk Disk 8 Disk update (update a record in place)
Array Array 9 Copy one array to another
TSO Stack TSO Stack N/A (Only one TSO stack is available)

Page [53]

Example 1: Read a disk file into the TSO stack
“Alloc fi(DDIn) Da(user.work) shr"
NewStack
"ExecIO * DiskR DDIn (Finis "
"Free Fi(DDIn)"

And then, to process the stack:
Do while queued() > 0
 Pull OneLine
 Say OneLine
End

Caution: If you read information into the stack, and then leave it there, whether
intentionally or by an error in your Rexx exec, TSO will try to execute it.

Example 2: Read a disk file into an array
"Alloc fi(DDIn) Da(Rexx.exec(TestData)) shr"
"ExecIO * DiskR DDIn (Stem Lines. Finis "
"Free Fi(DDIn)"
And then, to process the array:
Say "The disk file contains " Lines.0 "lines. Here they
are:"
Do I = 1 to Lines.0
 Say Lines.I
End

Example 3: Read the TSO stack into an array
/* If the queue is empty, say so and get out */
If queued() < 1 then do
 say "The TSO stack is empty!"
 Exit 16
End
/* Now read the stack into an array */
Lines.0 = queued()
Do I = 1 to queued()
 Pull NewLine
 Lines.I = NewLine
End

And then, to process the array:
Do I = 1 to Lines.0
 Say Lines.I
End

Example 4: Write the TSO stack to disk
If queued() > 0 then do
 "Alloc Fi(DDOut) da(work.data(test2)) shr"
 "ExecIO * DiskW DDOut (Finis "
 "Free Fi(DDOut)"
End
Else
 Say "The queue was empty; no file written!"

Example 5: Write an array to disk

Page [54]

"Alloc Fi(DDOut) da(work.data(test3)) shr"
"ExecIO * DiskW DDOut (Stem Recds. Finis "
"Free Fi(DDOut)"

Example 6: Read an array into the TSO stack
"Alloc Fi(DDIn) da(work.data(test1)) shr"
"ExecIO * DiskR DDIn (Finis "
"Free Fi(DDIn)"
Say "I read "queued()" records into the TSO stack"
DelStack /* Delete this stack when done */

Example 7: Copy a disk file, one record at a time
"Alloc Fi(DDIn) da(work.data(test1)) shr"
"Alloc Fi(DDOut) da(work.data(test6)) shr"
RecsCopied = 0
Do Forever
 "ExecIO 1 DiskR DDIn" /* Read a disk record*/
 If RC = 0 then do /* Not end of file */
 "ExecIO 1 DiskW DDOut" /* Write a disk rec */
 RecsCopied = RecsCopied + 1 /* Count the records copied */
 End
 Else Do /* End of file */
 "ExecIO 0 DiskR DDIn (Finis" /* Close the input file */
 "ExecIO 0 DiskW DDOut (Finis" /* Close the output file */
 Leave
 End
End
"Free Fi(DDIn,DDOut)"
Say "I copied "RecsCopied" records"

Example 8: Disk Update (update a record in place)
This is accomplished by reading a disk record (for update) into the stack, removing it from
the stack into a variable, modifying it (in the variable), putting it back into the stack, and
then writing the record back to disk, from the stack.
"Alloc Fi(DDUp) da(work.data(test1)) OLD"
"NewStack" /* Establish a new stack */
RecsUpdated = 0
"ExecIO 1 DiskRU DDUp 4 " /* Read record number 4 */
Pull Record /* Read stack */
Say "Record number 4 is" Record
Record = left(Record,10)||"* this asterisk is in column 11"
Say "The record was changed to:" Record
Push Record /* Put it back into the stack*/
"ExecIO 1 DiskW DDUp " /* Write the record back */
RecsUpdated = RecsUpdated + 1
"ExecIO 0 DiskW DDUp (Finis" /* Close the I/O file */
"Free Fi(DDUp)"
"DelStack" /* Delete the new stack */
Say "I updated "RecsUpdated" records"

Example 9: Copy one array to another
"Alloc Fi(DDin) da(work.data(test1)) SHR"
RecsCopied = 0
"ExecIO * DiskR DDin (stem Recs. Finis)" /* Read the disk into array */
Say "There are "Recs.0" records in the Recs array"
"Free fi(DDIn)"
Do I = 1 to Recs.0

Page [55]

 Recs2.I = Recs.I
End
Recs2.0 = Recs.0
Say "There are "Recs2.0" records in the Recs2 array"
Do I = 1 to Recs2.0
 Say Recs2.I
End

Page [56]

 Exit

Purpose: Terminate a Rexx exec, and optionally set a return code.

Type: Rexx Instruction

Syntax: Exit ReturnCode
where ReturnCode is any code you wish to set.

Usage: Typically, the Exit instruction is coded at the end of a Rexx exec's
processing, but it can indeed be used to prematurely terminate a Rexx exec.
ReturnCode is the MVS return code, and can be tested by a calling
program (another Rexx exec, for example), or by JCL.

To check for charcter strings instead of words, use Index.

Example:
Exit 16 /* Tell the caller I failed */
Exit 0 /* Tell the caller I processed ok */

Page [57]

Expose

Purpose: Make a local variable available to an external routine

Syntax: PROCEDURE EXPOSE variable

Usage: Typically, when an exec calls a procedure, it passes to the procedure all of
the necessary values. The procedure, by rules of good coding, hides all of
its local variables (by using the "Procedure" statement. If the procedure
wants to pass one of those variables back, it can simply "Expose" the
variable.

Example: This is an example of a program that will calculate a bowling average for a
five-game tournament.
/* Test1 - Example Rexx Program */
Call GA 157 202 170 160 144
Say "Your bowling average is " Result
Say "Your high game was " HighGame
Say "Your low game was " LowGame
Exit

GA:
Procedure Expose HighGame LowGame
Arg Game1 Game2 Game3 Game4 Game5
 Total = Game1 + Game2 + Game3 + Game4 + Game5
 BowlAverage = Total / 5
 HighGame = 0
 If HighGame < Game1 then HighGame = Game1
 If HighGame < Game2 then HighGame = Game2
 If HighGame < Game3 then HighGame = Game3
 If HighGame < Game4 then HighGame = Game4
 If HighGame < Game5 then HighGame = Game5
 LowGame = 300
 If LowGame > Game1 then LowGame = Game1
 If LowGame > Game2 then LowGame = Game2
 If LowGame > Game3 then LowGame = Game3
 If LowGame > Game4 then LowGame = Game4
 If LowGame > Game5 then LowGame = Game5
Return BowlAverage

In the above example, the first line is a Call to procedure "GA". It passes
five bowling scores.

The first thing that procedure "GA" does, is make the variables HighGame
and LowGame available to the caller, by Exposing them. Note that if the
entire Procedure statement was removed, all of the variables would be
available. In larger programs, that could be a problem.

Page [58]

External

Purpose: Extract the number of terminal buffer or command stack elements that have
been logically typed ahead by the terminal user.

See PARSE EXTERNAL for documentation on this subject.

Page [59]

Find

Purpose: Return the position of a word/words in a sentence

Type: Rexx Function

Syntax: Result = FIND(sentence,words)
where result is the word number where words appears in sentence. Result
is 0 if words does not appear (as actual words) in sentence. (By definition,
"word" is a character string enclosed by delimiters.)

Examples:
Position = FIND('Fourscore and seven years ago','years')

will result in 4. years is the fourth word in the sentence.

Position = FIND('Fourscoreandsevenyearsago','years')

will result in 0. years does not appear as a word in the sentence.
(The sentence contains only one word.)

Say FIND('Fourscore and seven years ago','and seven')

will result in 2.

Page [60]

Form

Purpose: Returns the current setting of "Numeric Form".

Type: Rexx Function

Syntax: CurrSetting = Form()
where CurrSetting will contain either "SCIENTIFIC" or
"ENGINEERING"

See also Numeric Form for documentation on this function.

Page [61]

Format

Purpose: To print a number

Type: Rexx Function

Syntax: Result = Format(number,left-of-decimal,right-of-decimal)
where Result is the formatted representation of number. left-of-decimal
denotes how many digits to display on the left side of the decimal point,
padded with blanks. right-of-decimal denotes how many decimal digits to
display on the right side of the decimal point, zero-filled.

Usage: This function is used to display numbers so they line up with others being
displayed, or to display a number in a certain way.

Example:
/* Test1 - Example Rexx Program - Rexx EXEC */
Say "How much money did you have yesterday?"
Pull YAmount
Say "How much money do you have now?"
Pull NAmount
Diff = NAmount - YAmount
If Diff > 0 then DiffWord = "Gained"
else Diffword = "*Lost*"
Diff = ABS(Diff)
Say "Yesterday, you had $" Format(YAmount,4,2)
Say " Now, you have $" Format(NAmount,4,2)
Say "You "DiffWord" $" Format(Diff,4,2)

In the above example, when the Rexx exec asked:
How much money did you have yesterday?

And you answered: 2

And then the Rexx exec asked:
How much money do you have now?

And then you answered: 1.5
The Rexx exec would display:
Yesterday, you had $ 2.00
 Now, you have $ 11.50
You *Lost* $ 9.50

Notice how the amounts line up. Without the formatting provided by the
Format function, Rexx would display the following:
Yesterday, you had $2
 Now, you have $11.5
You Gained $9.5

Page [62]

Fuzz

Purpose: Returns the current setting of "Numeric Fuzz".

Type: Rexx Function

Usage: This is an inquiry as to this setting: how many low-order digits Rexx should
ignore in comparisons.

See Numeric Fuzz for documentation on this function.

Page [63]

 If

Purpose: Test for certain conditions (via program expressions), allowing action to be
taken based on the results of the test.

Type: Rexx Instruction

Syntax: IF expression THEN If expression THEN DO
instruction one or more instructions

ELSE END
instruction ELSE DO

one or more instructions
END

Expression: Any valid program expression. If the statement is TRUE, the expression
evaluates to a one. Conversely, if the expression is false, the expression
evaluates to a zero. Rexx uses that value to determine whether it should
execute the "THEN" instructions, or the "ELSE" instructions.

The operators that can be used in an expression follow:
> is greater than
< is less than
/= \= <> is not equal
= equal: numerically equivalent;

equivalent when padded with blanks
= = strictly equal: exactly the same

Examples: The following statements are
TRUE FALSE
1 < 2 1 > 2
2 > 1 2 < 1
3 <> 4 4 <> 4
"5b" = "5" "5b" = = "5" (b represents a space)
.02 = 0.02 .02 = = 0.02

Comparing
strings: Do NOT use "If >" to compare strings. Before a compare is done, high-

order blanks are removed. Therefore, the following statement
If " C4" < "BB3"

will result in false.

Page [64]

You can use the Compare function to compare strings, but only for
equality or inequality. To compare the value of strings, convert each
character with C2D first, as follows:

Do N = 1 to length(OldKey)
 If C2D(substr(OldKey,N,1)) < C2D(substr(NewKey,N,1)) then

Leave
If C2D(substr(OldKey,N,1)) > C2D(substr(NewKey,N,1)) then

Do
 Say "The input file is out of sequence!"
 Exit
 End
End

Page [65]

If, Compound

Purpose: To allow more than one expression in an "IF" statement.

Type: Rexx Instruction

Syntax: If expression bo expression bo expression...
Where:

expression is as defined above
bo is a Boolean operator.

Boolean
operator: & All expressions are true

| At least one expression is true. (You must use the "OR" bar; you
cannot use the word "OR"

&& Only one of two expressions is true, and not both

Examples:
If month = "DECEMBER" | month = "JANUARY" | ,
month ="FEBRUARY" then

season = "WINTER"

CandidateA = "Incumbent"
CandidateB = "Incumbent"
If CandidateA = "Incumbent" && ,
 CandidateB = "Incumbent" then

Say "Input is okay"
Else

Say "Dummy! They can't both be incumbents!"

The previous excerpt of code will call you a dummy, because you told the
program that both candidates were incumbents.

Page [66]

If-Then-Do

Purpose: Execute one or more instructions one time based on some condition.

Type: Rexx Instruction

Syntax: IF expression THEN DO
END
where expression is any valid Rexx expression.

Example: If A = B then do
 (one or more instructions)
End

In this example, one or more instructions is executed only if A
= B.

Page [67]

Index

Purpose: Return the position of a character string in another

Type: Rexx Function

Syntax: Result = INDEX(object, source)
where result is the position number where source appears in object. Result
is 0 if source does not appear in object.

Note: Index differs from Pos in that object and source are in opposite sequence
in the command.

Examples:
Say Index('Fourscore and seven years ago','and seven')

will return "11".

Say Index('Fourscoreandsevenyearsago','andseven')

will return "10".

Page [68]

Insert

Purpose: Copy a string into another string.

Type: Rexx Function

Syntax: Result-string = INSERT(new-string,old-string,where)
where result-string is the string that will contain the old-string with the
new-string inserted into it. new-string will be inserted into old-string after
the where position.
If where is greater than the length of old-string, then old-string wll be
padded with enough blanks to accomodate the insertion operation.

Examples:
Say Insert("Apple","Worm",2)

Will result in
WoApplerm

Say Insert("Apple","Worm",7)

Will result in
Worm Apple

(There are three spaces between "Worm" and "Apple").

Page [69]

Interpret

Purpose: To make Rexx process an expression as an instruction; that is, execute
instructions that have been built dynamically.

Type: Rexx Instruction

Syntax: INTERPRET expression1 expression2 ...

Usage: This is one of those highly esoteric Rexx functions. I have never had a need
for this instruction (which is not to say a person never will).

Example:
1 Instr = "Say"
2 Var = "Hello World"
3 Instr Var
4 Interpret Instr Var

Line 1 is simply setting the variable Instr to the character string "Say".
Line 2 is simply setting the variable var to the character string "Hello
World".
Line 3 is being passed to TSO by Rexx, and the result is as follows:
COMMAND SAY NOT FOUND
 4 *-* Instr Var

 +++ RC(-3) +++

Line 4 tells Rexx not to pass these commands on to TSO, as it did with line
3, but to execute them instead. The result is:
HELLO WORLD

Page [70]

Iterate

Purpose: Pass through the remainder of the instructions in a "DO" loop without
executing them.

Type: Rexx Intruction

Syntax: IF expression THEN ITERATE
where expression is any valid Rexx expression.

Usage: This is used to "skip" the remainder of a Do group.

Example: /* Test1 - Example Rexx Program - Rexx EXEC */
Say "Please tell me your name"
Pull YourName
Do I = 1 to length(Yourname)
 If I = 1 then iterate

 Say "The "I"th letter of your name is "I
End

The above example will print every letter of the name the user types in,
except the first.

See the documentation on Do for more detailed information.

Page [71]

Justify

Purpose: Justify a string to both margins.

Type: Rexx Function

Syntax: NewString = JUSTIFY(string,length)
where NewString is the newly-created justified string; string is the
character string being justified, and length is the length of NewString.

Usage: A new string is created by justifying the old string to both margins, and
adding blanks between words.

If the specified length is less than the string, then the new string will be
truncated on the right. Note that this should be viewed only as a side-
effect, and not used purposely. Use the LEFT function instead when this is
the desired effect.

If there is only one word in the string being justified, it will be justified on
the left.

Examples:
The following excerpt from a Rexx exec:
NewString = JUSTIFY('Hello, world! I am terrific!',30)
Say NewString

will result in NewString containing the following:
Hello, world! I am terrific!

within a 30-character field.

The following excerpt from a Rexx exec:
NewString = JUSTIFY('Hello, world! I am terrific!',10)
Say NewString

will result in NewString containing the following:
Hello, wor

Notice that only 10 positions were kept.

Page [72]

Labels

Purpose: To provide a target for the "Signal" instruction.

Syntax: A label is immediately followed by a colon, with no intervening spaces.

Example:
Endit:
Exit

In the above example, "EndIt" is a label.

Page [73]

LastPos

Purpose: Return the position of the last occurrence of one string within another.

Type: Rexx Function

Syntax: Position = LASTPOS(find-string,target-string)
Where position is the position number of the last occurrence of find-string
within target-string.

Examples: The following Rexx exec:
XMasGreeting = "We wish you a Merry Christmas"
Jingle = XMasGreeting || XmasGreeting || ,
XMasGreeting

Jingle = Jingle || "And a Happy New Year!"
Position = LASTPOS("Christmas",Jingle)

Say Position

will display "79".
XMasGreeting appears 3 times in Jingle (and is 29 chracters long). The
last occurrence of the word "Christmas" appears in the 79th position of
Jingle.

Page [74]

Leave

Purpose: Prematurely exit from a "DO" loop.

Type: Rexx Instruction

Syntax: (None)

Usage: “Do loops” can be written in a number of different ways. The example
below illustrates just one of those ways. In this particular example, the only
graceful way of exiting is by use of the Leave instruction.

Example:
/* Test1 - Example Rexx Program - Rexx EXEC */
Do Forever
 Say "Tell me your name, or enter 0 to quit"
 Pull Answer
 If Answer = "0" then Leave

 Say "You told me that your name was" Answer"
End

The above Rexx exec will echo back whatever you type in, until you enter
a zero.

Page [75]

Left

Purpose: Return the left "n" positions of a string.

Type: Rexx Function

Syntax: NewString = LEFT(oldstring,quantity)
Where NewString is the leftmost quantityth positions of oldstring

Example: In the following code,
First8 = LEFT("ABCDEFGHIJKLMN",8)

First8 will contain "ABCDEFGH"

See Also: Right

Page [76]

Length

Purpose: Return the length of a literal, string, or string variable

Type: Rexx Function

Syntax: Answer = LENGTH(variable)

Usage: This is a Rexx built-in function that will return the length of a literal, string,
or string variable.

Example:
Answer = length("Merry Christmas and Happy New Year")
Say Answer

Would display
34

Page [77]

LineSize

Purpose: This is a Rexx built-in function that will return the terminal line width
minus 1.

Type: Rexx Function

Syntax: Result = LineSize()

Usage: This is an inquiry-only function, and will usually return "79".

Page [78]

ListDSI

Purpose: Retrieve information about a TSO dataset.

Type: TSO external function

Syntax:
 LISTDSI(datasetname directory)

or
LISTDSI(filename type directory)

datasetname- the name of the data set about which you want information.
directory- an option that indicates whether or not you want PDS directory
information returned.

DIRECTORY - return directory information. Note that this option
must be specified if you want the PDS-specific variables below to
contain the desired information (SYSADirBlk, for example).
NODIRECTORY - Do not return directory information. This is the
default.

filename is the DD name if you pre-allocated the file

type Specify 'FILE' if the first operand is a DDName instead of a
datasetname

Usage: This function will retrieve information about a dataset, and put it into
variables.

The function is said to succeed if it can access the desired dataset
information, and fail if it cannot. The function in reality does not fail,
however, because if the dataset cannot be allocated, LISTDSI sets three
variables that say why.

If the function succeeds, the return code is set to zero, and
certain variables are set:
SYSADirBlk For a PDS, this value will contain the number of directory

blocks allocated. For a PDSE or sequential dataset, this
value will be blank.

SYSALLOC Total space allocation
SYSBLKSize Block size of the dataset
SYSBLKSTrk Blocks per track for the unit that this file is on
SYSCreate Date the dataset was initially created; julian

date format: yyyy/ddd
SYSDSName Fully-qualified datasetname
SYSDSorg DSORG of the dataset

Page [79]

SYSExDate Expiration date of dataset. 0, if there is none.
SYSExtents Number of extents used
SYSKEYLEN Key length. 0 for non-keyed datasets
SYSLRECL Logical record length
SYSMembers Number of members in the PDS. This value

is blank for PDSE's.
SYSPassword The password assigned to the dataset, or

"NONE"
SYSPrimary Primary space allocation quantity
SYSRACFA Level of RACF protection. Possible values

are "NONE", "GENERIC", and
"DISCRETE"

SYSRECFM Record format of dataset
SYSRefDate Date the dataset was last referenced; julian

date format: yyyy/ddd
SYSSeconds Secondary space allocation
SYSTrksCyl The number of tracks per cylinder on the

volume on which this dataset resides
SYSUDirBlk. For a PDS, this value will contain the
number of directory blocks used

SYSUnit Generic unit of the volume, such as "3390" SYSUnits
Units of allocation: "TRACK", "BLOCK",
"CYLINDER", etc

SYSUpdated Whether the dataset was ever updated:
"YES" or "NO"

SYSUSED Current space utilization: quantity of
"SYSUnits" above. "N/A" for PDSE's

SYSVolume The volume serial number on which this
dataset resides

If the LISTDSI function fails, the return code is set to 16, and certain other
variables are set:
SYSMSGLVL1 Primary, or generic error message
SYSMSGLVL2 Specific error message
SYSReason An error number

Page [80]

Examples: Consider the following Rexx Exec:
/* Test1 - Example Rexx Program - Rexx EXEC */
RC = listdsi(junk.data)
If RC = 0 then do

Say "Allocation was successful."
Say "SYSADirBlk="SYSADirBlk
Say "SYSALLOC="SYSALLOC
Say "SYSBLKSIZE="SYSBLKSIZE
Say "SYSCreate="SYSCreate
Say "SYSDSorg="SYSDSOrg
Say "SYSDSName="SYSDSName
Say "SYSExtents="SYSExtents
Say "SYSExDate="SySExDate
Say "SYSKEYLEN="SYSKEYLEN
Say "SYSLRECL="SYSLRECL
Say "SYSMembers="SYSMembers
Say "SYSPassword="SYSPassword
Say "SYSPrimary="SYSPrimary
Say "SYSRefDate="SYSRefDate
Say "SYSRACFA="SYSRACFA
Say "SYSRECFM="SYSRECFM
Say "SYSSeconds="SYSSeconds
Say "SYSTrksCyl="SYSTrksCyl
Say "SYSUnit="SYSUnit
Say "SYSUnits="SYSUnits
Say "SYSUpdated="SYSUpdated
Say "SYSUSED="SYSUSED
Say "SYSVolume="SYSVolume

End
Else do

Say "Return code = " RC
Say "SYSReason="SYSReason
Say "SYSMSGLVL1="SYSMsgLvl1
Say "SYSMSGLVL2="SYSMsgLvl2

End

Using the above exec, I performed a LISTDSI on an existing PDS, and the
Rexx exec reported as follows:
Allocation was successful.
SYSADirBlk=
SYSALLOC=15
SYSBLKSIZE=32720
SYSCreate=1997/104
SYSDSorg=PO
SYSDSName=DGRUND.WORK.DATA
SYSExtents=1
SYSExDate=0
SYSKEYLEN=0
SYSLRECL=80
SYSMembers=
SYSPassword=NONE
SYSPrimary=15
SYSRefDate=1997/107
SYSRACFA=GENERIC
SYSRECFM=FB
SYSSeconds=1
SYSTrksCyl=15
SYSUnit=3390

Page [81]

SYSUnits=TRACK
SYSUpdated=YES
SYSUSED=N/A
SYSVolume=PCF011

Using the same exec, I performed a LISTDSI on an non-existent PDS, and
the Rexx exec reported as follows:

Return code = 16
SYSReason=0005

SYSMSGLVL1=IKJ58400I LISTDSI FAILED. SEE REASON CODE IN VARIABLE
SYSREASON.

SYSMSGLVL2=IKJ58405I DATA SET NOT CATALOGUED. THE LOCATE MACRO RETURN
CODE IS 0008

Page [82]

Literals

Purpose: Literals exist so variables can represent an unchanging value.
Rexx supports literals of a number of different types.

Usage: Typically, a literal is one that is enclosed by either a set of quotation marks
or apostrophes.
"HELLO WORLD" and
'HELLO WORLD' represent the same character string.

Literals can be numeric, character, hexadecimal, and binary. "FOUR" is a
character literal; "4" is a numeric literal.

The reason I say "typically", is because that is not always the case. (This is
probably one of my biggest complaints about Rexx. I feel that if it was
more stringent, it would be easier to figure out and explain.)
• A character literal doesn't have to be enclosed. If it isn't, it is changed to
all upper case.
• A character literal that is not enclosed can be converted to a variable by
using it on the left side in an assignment statement. (You will get a syntax
error if you try to assign a literal that is enclosed).

Consider this example. The following excerpt is from a Rexx Exec:
Say "Hello, World" /* Character string */
Say Hello World /* Two literals */
World = "Dave" /* Make "World" a variable */
Say Hello World

will yield the following results:
Hello, World
HELLO WORLD
HELLO Dave

A good rule of thumb to follow is always enclose literals. That way, if a
character string appears in your output, you can bet it's an (uninitialized)
unused variable.

Page [83]

Logical Operators

REXX supports the following logical (Boolean) comparison operators:

& AND - returns a 1 (true) if both comparisons are true, and a 0 (false) otherwise -
performs a logical AND operation

| OR - returns a 1 (true) if at least one comparison of several is true, and a 0 (false)
otherwise - performs a logical or operation

&& EXCLUSIVE OR - returns a 1 (true) if ONLY one of a group of comparisons is
true, and a 0 (false) otherwise - performs a logical exclusive OR function

\ NOT - returns the reverse logical value for an expression - returns false if expression
resolves to true, and true if the rexpression resolves to false

Page [84]

Math

Rexx performs math whenever it can recognize arithmetic operators. The valid
Rexx operators are as follows:

Operator Function
+ Add
- Subtract
* Multiply
/ Divide
% integer divide
// remainder of division
** Exponentiation
() group items

Usage
The primary operations (+, -, *, /) are obvious, so not much further discussion is

needed here.

%- Integer
Divide Any remainder is dropped

//- Remainder
of Division Yields the remainder in a division expression.

The following excerpt from a Rexx exec:
"EXECIO" 1 "DiskW SYSUT2"
OpCount = OpCount + 1
If OpCount // 1000 = 0 then
 Say OpCount "records written so far..."

will print a message line for every 1000th record written. This, of course, is
useful in a long-running program.

**- Exponentation

() Operations within expressions to make them take precedence over normal
precedence.

Page [85]

Max

Function: Return the highest of a series of numbers.

Type: Rexx Function

Syntax: HighNum = MAX(num1, num2...)

Usage: A maximum of 20 numbers can be provided.

Example:
Say Max(1,3,5,17,9,6,4)

will yield "17" (without the quotation marks)

Min

Purpose: Return the lowest of a series of numbers.

Type: Rexx Function

Syntax: LowNum = MIN(num1, num2...)

Usage: A maximum of 20 numbers can be provided.

Example:
Say Min(8,3,5,17,9,6,4)

will yield "3" (without the quotation marks)

Page [86]

Msg

Purpose: Change or inquire as to the current TSO "MSG" setting.

Type: TSO external function

Syntax: Setting = MSG(on/off)
where setting is the current setting, before it is changed by what is in the
parentheses;
on/off is either "ON", "OFF", or nothing.

Usage: The TSO "MSG" setting indicates whether TSO messages are printed
during the execution of a Rexx exec or not. Specify the command with
"ON" to turn message displays on, "OFF" to turn message displays off, and
a null parameter (just the parentheses with nothing in them) to display the
current setting.

Example 1: In the following example,
1 Say Msg()
2 MSetting = Msg(Off)
3 Say MSetting
4 Say Msg()

1 will display the current TSO message setting, either "ON" or "OFF"
2 will capture the current TSO MSG setting into the variable MSetting, and
then set the setting to "OFF", regardless of what it was
3 will display the variable MSetting
4 will display the new current setting, which will be "OFF"

Example 2: In the following example,
1 Say Msg()
2 Say "About to allocate the first time..."
3 "Allocate FI(dummy) DA(junk2.data) shr"
4 Junk = Msg(Off)
5 Say "About to allocate the second time..."
6 "Allocate FI(dummy) DA(junk2.data) shr"

1 will display the current TSO message setting, either "ON" or "OFF"
2 tells the user that we are about to issue a TSO command
3 allocates the file, if possible
4 turns the MSG setting off
5 tells the user again that we are about to issue a TSO command
6 allocates the file again, if possible
The dataset junk2.data does not exist, so each attempt at allocating it will
fail. Line 3 above will issue a message because the TSO MSG setting is on.
Line 6 above would have issued a TSO message, but the TSO MSG setting
was off.

Page [87]

NewStack

Purpose: Establish a new TSO stack

Type: TSO command

Syntax: NewStack

Usage: To tell Rexx that from here on, all stack operations are to be conducted on
a newly-established TSO stack, instead of the one that existed when the
instruction started. The "old" stack is left alone and unharmed by further
operation, until a DelStack is issued to discard this newly-established stack.

See also: DelStack

Page [88]

NOP

Purpose: No operation

Type: Rexx instruction

Syntax: NOP

Usage: Allow you to use an instruction that performs no action in a place where an
instruction (of any kind) is required.

Example: The following example is coded this way to avoid complicated negative
logic.
If A = 1 | A = 2 then

Nop /* do nothing */
Else

Say "answer was incorrect"

Page [89]

Numeric

Purpose: Set certain rules for Rexx's handling of numbers. It controls the waya Rexx
exec carries out arithmetic operations.

Type: Rexx instruction

Syntax: Numeric function
Where function is either Digits, Form, or Fuzz.

Digits controls the precision to which arithmetic operations are evaluated.

Form directs which form of exponential notation Rexx uses of the result
of arithmetic operations

Fuzz controls how many digits, at full precision, are ignored during a
numeric comparison operation.

In many cases, these three functions work together to produce the desired
results.

Numeric Digits

Purpose: Controls the precision to which arithmetic operations are evaluated.

Syntax: Numeric Digits NoOfDigits
NoOfDigits - Defaults to 9, and must be larger than the current

NUMERIC FUZZ setting. There is no practical limit to the
value for DIGITS, but keep in mind that higher values result
in added processing time.

Example: The following Rexx exec snippet:
Numeric Digits 5 ; Say 1234.56 * 1
Numeric Digits 4 ; Say 1234.56 * 1
Numeric Digits 3 ; Say 1234.56 * 1
Numeric Digits 2 ; Say 1234.56 * 1
Numeric Digits 1 ; Say 1234.56 * 1

Will produce:
1234.6
1235
1.23E+3
1.2E+3
1E+3

Page [90]

Numeric Form

Purpose: Directs which form of exponential notation Rexx uses for the result of
arithmetic operations

Syntax: Numeric Form mode
Where mode is either SCIENTIFIC or ENGINEERING
SCIENTIFIC notation adjusts the power of ten so there is a single non-
zero digit to the left of the decimal point.
ENGINEERING notation causes the power of ten to be expressed as a
multiple of 3.

Example: The following Rexx exec snippet:
Numeric Digits 2
Numeric Form Scientific
Say 123.45 * 1
Numeric Form Engineering
Say 123.45 * 1

Will produce:
1.2E+2
120

Page [91]

Numeric Fuzz

Purpose: Controls how many (low-order) digits, at full precision, are ignored during
a numeric comparison operation. The exact way this function works is
actually slightly complicated.

Syntax: Numeric Fuzz ToIgnore
ToIgnore - Defaults to 0. It must be smaller than the current setting of

NUMERIC DIGITS.

Usage: During the numeric comparison, the numbers are subtracted under a
precision of DIGITS minus FUZZ digits, and the difference is then
compared to 0.

Example 1: The following Rexx exec snippet:
Value1 = 133456
Value2 = 123457

Numeric Digits 6
Numeric Fuzz 5
If Value1 = Value2 then Say "They are equal"
Else Say "They are NOT equal"

Will produce:
They are equal
Digits (6) minus Fuzz (5) equals 1. That is the number of digits from the
left that are compared. Since the first digit in each of Value1 and Value2
are identical, this comparison is true.

Example 2: The following Rexx exec snippet:
Value1 = 133456
Value2 = 123457

Numeric Digits 6
Numeric Fuzz 5
If Value1 = Value2 then Say "They are equal"
Else Say "They are NOT equal"

Numeric Fuzz 4
If Value1 = Value2 then Say "They are equal"
Else Say "They are NOT equal"

Will produce:
They are equal

Page [92]

Digits (6) minus Fuzz (4) equals 2. That is the number of digits from the
left that are compared. The first two digits of Value1 (13) are compared to
the first two digits of Value2 (12). This comparison is obviously false.

Page [93]

Operators

Arithmetic Operators- See the subject entitled "Math"
Comparison Operators- See the subject entitled "Compare"
Logical Operators- See the subject entitled "Logical Operators"
Concatenation Operators- See the subject entitled "Concatenation"

REXX Operator Precedence
The following list shows order of precedence for ALL REXX operators:

1) Expressions in parenthesis are evaluated first
2) prefix operators ==> -, + \
3) exponentiation ==> **
4) Multiplication and division in this order ==> *,/,%,//
5) Addition and Subtraction ==> + and -
6) concatenation ==> || or blank
7) comparison operators ==> ==,=,\==,\=,>,<,><,>=,<=,\<,\>
8) logical AND ==> &
9) logical OR and EXCLUSIVE OR ==> |, &&

Page [94]

OutTrap

Purpose: To turn on or off the capturing of TSO output.

Type: TSO external function

Syntax: ReturnCode = OUTTRAP(stem.,max)
ReturnCode = OUTTRAP('ON'/OFF')
where stem. is the name of the array into which the TSO output will be
built, and max is the maximum number of records that will be written. Note
that stem must end in a period. ReturnCode will be 0 if the function
succeeds.

Usage: OUTTRAP("ON"): Turn on capturing of TSO messages and output,
simply "swallow" it. Nothing wil be displayed at the terminal.
OUTTRAP("OFF"): Stop the capture of TSO messages and output, in
which case they will start being displayed at the terminal again.
OUTTRAP(stem.,max): Turn on capturing of TSO messages and output,
and write it all to an array named stem. max is the maximum number of
records that will be written. Specify "*" to process all records, although
that is the default.

Example: In the following example, we are trying to write all of the member names of
a PDS to an array. As a byproduct of the TSO command that we are using,
some unwanted information is written to the array as well.
Dummy = OutTrap("output_line.","*")
"LISTd work.data m"
NumLines = OutPut_Line.0
Say NumLines "lines were created"
Dummy = OutTrap("OFF")
Do I = 0 to NumLines
 Say "Output_Line."I"="Output_Line.I
End

After execution of this exec, the array called Output_Line looks like this:
Output_Line.0=8
Output_Line.1=DGRUND.WORK.DATA
Output_Line.2=--RECFM-LRECL-BLKSIZE-DSORG
Output_Line.3= FB 80 32720 PO
Output_Line.4=--VOLUMES--
Output_Line.5= PCF011
Output_Line.6=--MEMBERS--
Output_Line.7= PROG01
Output_Line.8= PROG02

There are only two members in the PDS, but the array contains all of the
other output from the ListDS command. It's really simply to process
around it, though, like this:
Do I = 7 to Output_Line.0

Page [95]

Overlay

Purpose: Move characters over (on top of) other characters.

Type: Rexx Function

Syntax: NewString = OVERLAY(source,object,position)

Usage: This function replaces the characters in object with the characters in
source, starting at position. If object is less than position, it is padded with
blanks.

Example 1: This is what happens when you use the command the wrong way:
NewString = OVERLAY("ABCDEFGHIJK",'X',4)
Say Newstring

NewString will contain:
X ABCDEFGHIJK

Example 2: The following example decides, based on the day of the week, whose turn
it is to make the coffee.
Say "Today is " Date(W)
CoffeeMaker = "Undecided" /* default */
If Date(W) = "Monday" then CoffeeMaker = "Glenda"
If Date(W) = "Tuesday" then CoffeeMaker = "Alice"
If Date(W) = "Wednesday" then CoffeeMaker = "Thom"
If Date(W) = "Thursday" then CoffeeMaker = ,
"Brucey"
If Date(W) = "Friday" then CoffeeMaker = "Chuck"
Message = "The person in charge of making coffee
-> today is"
Position = length(Message) + 2
Say OVERLAY(Coffeemaker,Message,Position)

Page [96]

Parse

Purpose: Take data from one of several origins, optionally break it up, and then drop
it into variables.

Type: Rexx Instruction

Syntax: PARSE [UPPER] origin varname delimiter varname delimiter...
UPPER- Converts the data to upper case. This is the default.
origin- Places where REXX can get the data from:

ARG- Command line
VAR- A variable
PULL- The TSO stack
SOURCE- TSO info on how the program was executed
VALUE- Literal
EXTERNAL- Terminal
VERSION- Version of Rexx interpreter

varname- One or more variables
delimiter- Delimiters for parsing the origin data

Note: The words "Parse Upper" are optional. When Rexx sees any of these
origins, it assumes "Parse Upper".

Upper: "Upper" is optional, but it is the default. To not take the default, simply
specify "Parse" without the word "Upper".

Action: Rexx will move variables one at a time from the implied origin into the
variables specified after the origin keyword.

If there are more origin parameters than variables, Rexx will put all of the
remaining parameters into the last variable. The last variable can be a
period, in which case extra origin parameters will simply be discarded. I
don't recommend this, however. Letting these drop into a variable would
not hurt. You can always choose to ignore them, but the program will
require no modification here if you later choose to look at these
parameters.

If there are more variables than there are origin parameters, the variables
are set to spaces.

Delimiters break the input up and cause it to be processed separately, under
the guidelines specified above.

Page [97]

ARG: Take input from the command line. This is information that the user
supplied to the exec when entering the command. See examples EX01 and
EX02 below.

VAR: Take input from a variable. See example EX03 below.

PULL: Take input from the TSO stack. Use PULL to prompt the user for
information. (Whatever the user types in is moved into the TSO stack.) See
example EX04 below.

SOURCE: Take input from information that the system (TSO) maintains about your
REXX program. It returns nine values. They are:
1. Operating System. In this case, it would be TSO.
2. How the program (Rexx exec) was called. It will be either of
COMMAND, SUBROUTINE, or FUNCTION.
3. Name of the EXEC
4. DDName of command library; either SYSEXEC or SYSPROC
5. Datasetname containing the EXEC. It will be '?' if the command was
invoked implicitly.
6. The name that the command was invoked by. It will be "?" if the
command was invoked implicitly.
7. The initial address environment; generally TSO, MVS, or ISPEXEC
8. Environment: TSO, MVS, or ISPF
9. Reserved. Will be '?'
See example EX05 below.

VALUE: Take input from a literal. This function can be used to parse things like the
current time. See example EX06 below.

EXTERNAL: Take input from the terminal.

varname: One or more variable names

Delimiters: Delimiters to determine where origin data is divided. These delimiters can
be literals, variables, or column numbers.

Literal
Delimiters: Break input up at a specific character. See example EX03 below.

Variable
Delimiters: Break input up at a specific variable

Column number
Delimiters: Break input up under the control of column numbers.

Page [98]

Examples: I used the origins that I did for the sake of clear explanation only. The
following examples apply to all of the origins.

In the following Rexx program,
/* EX01 - REXX Example Program */
Parse Upper Arg Var1 Var2 Var3 Var4 Var5
Say Var1 ; Say Var2 ; Say Var3 ; Say Var4 ; Say Var5

If the command line read
Ex01 a b c d e

Rexx would display
A
B
C
D
E

If the command line read
Test1 a b c d e f g h

Rexx would display
A
B
C
D
E F G H

If the command line read
Test1 a b

Rexx would display
A
B

(with three blank lines following)

If the command line read
Test1 "My name is Dave"

Rexx would display
"MY
NAME
IS
DAVE"

 (blank line)

In the following Rexx program,
/* Ex02 - REXX Test Program */
Parse Arg Var1 Var2 Var3 Var4 Var5

 Say Var1 ; Say Var2 ; Say Var3 ; Say Var4 ; Say Var5

If the command line read
EX02 a b c d e

Rexx would display
a
b

Page [99]

c
d
e

In the following Rexx program,
/* EX03 - REXX Test Program */
Parse upper arg datasetname
Parse var datasetname PDSName "(" MemName ")" junk
Say "The command line parameter was " DatasetName
Say "The PDSName is " PDSName
Say "The MemberName is " MemName
Say "The junk variable is " junk

If the command line read
EX03 user.session.jcl(copyfile)

Rexx would display
The command line parameter was USER.SESSION.JCL(COPYFILE)
The PDSName is USER.SESSION.JCL
The MemberName is COPYFILE

In the following Rexx program,
/* EX04 - REXX Example Program */
Newstack
Say "Please tell me your first and last name"
Pull FirstName LastName
Say "You told me your first name was" FirstName
Say "You told me your last name was" LastName
DelStack

If the command line read
EX04

Rexx would display
Please tell me your first and last name

And if you replied
George Washington

Rexx would display
You told me your first name was GEORGE
You told me your last name was WASHINGTON

In the following Rexx program,
/* EX05 - REXX Example Program */
Parse Upper Source Stuff
Say Stuff

Rexx would display something like
TSO COMMAND EX05 SYSEXEC ? ? TSO ISPF ?

In the following Rexx program,
/* EX06 - REXX Example Program */
Parse Value Time() with Hrs ':' Mins ':' Secs
Say Hrs; Say Mins; Say Secs

If the time of day was 10:28:07, Rexx would display
10
28

Page [100]

07

/* EX07 - REXX Example Program */
Parse Version Me
Say Me

would display something like the following:
REXX370 VERS 3.48 01 May 1992

Page [101]

Pos

Purpose: This is a Rexx built-in function that will allow you to determine if a
character is present in a string or variable, by returning its position in the
string.

Type: Rexx Function

Syntax: Position = POS(source,object)
where position is the position of source within object. Position will be zero
if source does not apear in object.

Note: Index differs from Pos in that object and source are in opposite sequence
in the command.

Example: We will use the following Rexx exec for our examples:
/* Test1 - Check for Coffeemakers - REXX exec */
Arg Person
CoffeeMakers = "GLENDA ALICE THOM BRUCEY CHUCK
DAVE "
If Pos(Person,Coffeemakers) > 0 then
 say Person "is indeed one of our CoffeeMakers"
Else
 say Person "does not drink coffee with us"

The following command:
Test1 Alice

will yield the following message:
ALICE is indeed one of our CoffeeMakers

because POS contains 8

The following command:
Test1 Randy

will yield the following message:
RANDY does not drink coffee with us

because POS contains 0

The following command:
Test1 Al

will yield the following message:
AL is indeed one of our CoffeeMakers

This is an error, not in the Rexx exec, but in our usage of it. We are
checking only for the existence of the character string, and not whether that
charcter string is a whole word.

Page [102]

Procedure

Purpose: Establish that the current block of code is a Procedure, and thereby hide all
local variables

Type: Rexx Instruction

Syntax: PROCEDURE

Usage: This statement is needed only when you wish to hide the variables that
appear in the local block of code. You can then "unhide" some of them by
using the Expose function.

 See Expose for more information.

Page [103]

Prompt

Purpose: Change the setting of, or inquire as to the current setting of the TSO
"Prompt" setting.

Type: TSO external function

Syntax: Answer = PROMPT("ON"|"OFF"|)

Usage: Rexx PROMPT functions only if the TSO PROFILE PROMPT setting is
"ON")as opposed to "PROFILE NOPROMPT").

The "ON" parameter will cause Rexx to allow TSO commands to prompt
for necessary information.

The "OFF" parameter will force TSO commands to bypass the normal step
of stopping and asking for missing information.

In both of the above cases, the function will first return the current setting.

The empty parameter will simply return the current setting.

Example: The following exec is actually the same process run twice; once after
turning the TSO Profile Prompt setting ON, and once turning it off. During
each process, we will turn the Rexx Prompt setting on, issue the TSO
"Delete" command, and then turn the Rexx Prompt setting off, and then
issue the same TSO delete command. If you get confused, just remember
that there is a difference bewteen the TSO Prompt command and the Rexx
Prompt function.
"Profile Prompt"
Say "Here is the demo with the TSO prompt ON"
Dummy = prompt("ON")
Say "Rexx Prompt is " prompt()
"Newstack"
Delete
"Delstack"

Dummy = prompt("OFF")
Say "Rexx Prompt is " prompt()
"Newstack"
Delete
"Delstack"

"Profile NoPrompt"
Say "Here is the demo with the TSO prompt OFF"
Dummy = prompt("ON")
Say "Rexx Prompt is " prompt()
"Newstack"
Delete

Page [104]

"Delstack"

Dummy = prompt("OFF")
Say "Rexx Prompt is " prompt()
"Newstack"
Delete
"Delstack"

This exec will display:
Here is the demo with the TSO prompt ON
Rexx Prompt is ON
ENTER ENTRY NAME -

At which point, the command waits for a datasetname to be entered. I
entered "A".

Continuing the display...
ERROR QUALIFYING GRUND.A
** DEFAULT SERVICE ROUTINE ERROR CODE 20, LOCATE
ERROR CODE 8
LASTCC=8
Rexx Prompt is OFF
MISSING ENTRY NAME+
LASTCC=12
MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL
Here is the demo with the TSO prompt OFF
Rexx Prompt is ON
MISSING ENTRY NAME+
LASTCC=12
MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL
Rexx Prompt is OFF
MISSING ENTRY NAME+
LASTCC=12
MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

In the above exec, I tried the following 4 scenarios:
TSO REXX Prompting
PROMPT PROMPT Occurred?
ON ON YES
ON OFF NO
OFF ON NO
OFF OFF NO
In each case where prompting did not occur, TSO went along its merry
way, trying to delete a dataset whose name wasn't supplied. Naturally, it
failed.

Page [105]

Pull

Purpose: Get input from TSO

Type: Rexx Instruction

Syntax: Pull variable1 variable2...

Usage: This command will first look at the TSO stack. If the TSO stack is empty,
the command will prompt the user.

Example:
 1 NewStack

2 Push "Hello #1"
3 Pull Answer1
4 Say "I just learned" Answer1
5 Pull Answer2
6 Say "I just learned" Answer2

In this example,
1 Establishes a new stack
2 Puts the phrase "Hello #1" onto the stack
3 Gets (and removes) that phrase from the stack
4 Displays I just learned HELLO #1
5 Prompts the user for more input, since the stack is now empty
6 Displays whatever the user just typed in.

See Parse and Stack for documentation on this function.

Page [106]

Push

Purpose: Move data to the TSO stack.

Type: Rexx Instruction

Syntax: PUSH variable1 variable2 ...

Usage: Put things in the "input queue". This instruction works in LIFO format: last
in, first out. It operates like a pile of plates in a diner. The plates put on top
push the others down, and the first ones pulled off are the last ones put on.
Queue does the same thing as Push, but in FIFO format.

Example 1:
1 NewStack
2 Say "I have "queued()" lines on the stack"
3 Push "A" "B" "C"
4 Say "I have "queued()" lines on the stack"
5 Pull var1
6 Say "I pulled "Var1" off of the stack"
7 Say "I have "queued()" lines on the stack"

Line 1 established a brand new TSO stack to play with.
Line 2 tells us how many lines are on the stack. This should be "zero",
since we just started a new stack.
Line 3 pushed three variables (one line) onto the stack.
Line 4 again tells us how many lines are on the stack. This should be "one".
Lne 5 pulls those three variables off the stack, so now the stack again
contains zero lines.
Line 6 tells us the variables that the exec pulled off the stack
Line 7 again tells us how many lines are on the stack. This should be
"zero".

Example 2:
Newstack
Say "I have "queued()" lines on the stack"
Push "A" "B" "C"
Push "D" "E" "F"
Say "I have "queued()" lines on the stack"
Pull var1
Say "I have "queued()" lines on the stack"
Say "I pulled "Var1" off of the stack"
Pull var1
Say "I pulled "Var1" off of the stack"
Say "I have "queued()" lines on the stack"

In this example, "A B C" is pushed onto the stack. Then "D E F" are
pushed onto the stack. Since Push is a LIFO instruction, the program will
first pull "D E F" off the stack, then "A B C".

Page [107]

QStack

Purpose: Determine the number of data stacks currently in existence

Type: TSO Command

Syntax: QStack

Usage: To see if the exec (or subroutines) had created any data stacks

See also: NewStack, DelStack

Example: The following Rexx exec snippet:
"QStack" /* Returns a 1 in RC */
saverc = RC /* Save the number of stacks */
Say "The number of data stacks is " saverc
"NewStack" /* Create a new data stack */
"NewStack" /* Create a new data stack */
"QStack" /* Returns a 3 in RC */
saverc = RC /* Save the number of stacks */
Say "The number of data stacks is " saverc

Will display:
The number of data stacks is 1
The number of data stacks is 3

Page [108]

Queue

Purpose: Move data to the TSO stack.

Type: Rexx Instruction

Syntax: Queue variable1 variable2 ...

Usage: Put things in the "input queue". This instruction works in FIFO format:
First in, first out.
Push does the same thing as Queue, but in LIFO format.

Example 1:
1 NewStack
2 Say "I have "queued()" lines on the stack"
3 Queue "A" "B" "C"
4 Say "I have "queued()" lines on the stack"
5 Pull var1
6 Say "I pulled "Var1" off of the stack"
7 Say "I have "queued()" lines on the stack"

Line 1 established a brand new TSO stack to play with.
Line 2 tells us how many lines are on the stack. This should be "zero",
since we just started a new stack.
Line 3 pushed three variables (one line) onto the stack.
Line 4 again tells us how many lines are on the stack. This should be "one".
Lne 5 pulls those three variables off the stack, so now the stack again
contains zero lines.
Line 6 tells us the variables that the exec pulled off the stack
Line 7 again tells us how many lines are on the stack. This should be
"zero".

Page [109]

Queued

Purpose: This is a Rexx built-in function that will return the number of lines that are
currently available in the TSO stack.

Type: Rexx Function

Syntax: NumOfLines = Queued()

Example:
If Queued() > 0 then DelStack

In the above example, if there are any lines on the TSO stack, we will
delete them.

Page [110]

Quotation Marks/Apostrophes

Purpose: To enclose a literal (character string).

Syntax: " " or ' '

Usage: Literals are enclosed by a matched set of either apostrophes or quotation
marks. They can be used interchangeably, but must be used in matched
pairs.

A character string containing apostrophes can be enclosed by quotation
marks, or vice-versa.
The Rexx instruction: Yields:
Say "Hello, it's me!" Hello, it's me!
Say 'Hello, it"s me!' Hello, it"s me!

(Although the punctuation is incorrect)

A character string containing apostrophes can be enclosed by apostrophes
only if each of the contained apostrophes is represented by two.
The Rexx instruction: Yields:
Say 'Hello, it's me!' Error: unmatched quote
Say 'Hello, it''s me!' Hello, it's me!

The first example (enclosing apostrophes in quotation marks) is cleaner,
and is the recommended method.

Enclosing an expression causes Rexx to bypass the command, and pass it
right through to the environment; in our case, TSO.
Example:
"Say 'Hello, World' "

Would display
COMMAND SAY NOT FOUND
 8 *-* "Say 'Hello' "
 +++ RC(-3) +++

Page [111]

Random

Purpose: Return a random number

Type: Rexx Function

Syntax: Pick = RANDOM(min,max,seed)
where pick is the number selected; min and max is the range of numbers,
inclusive, from which the function can pick; and seed is the random number
seed; it is optional.

Usage: This function will pick a number that is commonly referred to as pseudo-
random. Specifying the same seed will produce the same random number.
Random

Example: This is an example of an Exec that thinks it camn guess what the current
temperature is.
MoNum = substr(Date(U),1,2)
If Monum = 1 then Do; Low = 0; High = 55; end
If Monum = 2 then Do; Low = 0; High = 60; end
If Monum = 3 then Do; Low = 15; High = 65; end
If Monum = 4 then Do; Low = 35; High = 80; end
If Monum = 5 then Do; Low = 45; High = 85; end
If Monum = 6 then Do; Low = 50; High = 90; end
If Monum = 7 then Do; Low = 55; High = 95; end
If Monum = 8 then Do; Low = 55; High = 95; end
If Monum = 9 then Do; Low = 50; High = 90; end
If Monum = 10 then Do; Low = 30; High = 85; end
If Monum = 11 then Do; Low = 10; High = 75; end
If Monum = 12 then Do; Low = 0; High = 60; end

Temp = Random(Low,High)
Say "The temperature right now is " Temp

Page [112]

RC

Purpose: Special variable set by TSO commands

Usage: This variable can be used to test the success/failure of a TSO command.

Example 1:
1 Say "This is a typical Rexx instruction"
2 Say "Return Code = "RC
3 Junk
4 Say "Return Code = "RC
5 Say "Hello, World"
6 Say "Return Code = "RC
7 Say A = B + C
8 Say "Return Code = "RC

Line 1 will simply display a message.
Line 2 wil display Return Code = RC. Line 1 was a Rexx instruction, and
did not set RC. Since RC was never set (in this exec), it is stil undefined.
Line 3 is not a Rexx instruction, so it is passed on to TSO, and the
following displays:
COMMAND JUNK NOT FOUND

3 *-* Junk
 +++ RC(-3) +++

Line 4 displays: Return Code = -3
Lines 5-6 display:
Hello, World
Return Code = -3
Return code was set to -3 before, and is unchanged because these are both
valid Rexx instructions.
Line 7 displays:

 7 +++ Say A = B + C
Error running T1, line 7: Bad arithmetic conversion

The Rexx exec stops here, so line 8 never executes.

Page [113]

Result

Purpose: Special TSO variable set by the Return instruction

Usage: This variable is set by the Return instruction after a subroutine is called. If
the subroutine returns an expression, Result will contain that expression. If
not, Result is dropped (becomes uninitialized).

Example: The following exec:
Call Proc1
Say "Result is " Result
Call Proc2
Say "Result is " Result
Exit
Proc1:
Return "abc"
Proc2:
Return

Will display:
Result is abc
Result is RESULT

Page [114]

Return

Purpose: Go back to a caller

Type: Rexx Instruction

Syntax: RETURN variable

Usage: Use this command to return to a calling program, and optionally pass a
variable. The variable that is passed back will be moved into the
"RESULT" variable for use by the caller.

Example 1:
Call Multiply 2 3
Say "The answer is "Result
Exit

Multiply:
 Arg Factor1 factor2
 Product = Factor1 * Factor2
Return Product

The above example illustrates the use of the Return function and the Result
variable. You could have specified Product instead of Result, but that
would have violated good programming techniques, and depending how
the subroutine is coded, may not give you the desired results. The
illustrated way always will.

Page [115]

Reverse

Purpose: Reverses the order of the characters of a string.

Type: Rexx Function

Syntax: Result = REVERSE(string)

Usage: Use this function to turn a string around.

Example 1: The following Rexx EXEC:
Message = "Happy birthday to you"
NewMsg = REVERSE(Message)
Say "The original message was " Message
Say "The new message is " NewMsg

Will display:
The original message was Happy birthday to you
The new message is uoy ot yadhtrib yppaH

The following Rexx EXEC:
Message = "Able was I ere I saw Elba"
NewMsg = REVERSE(Message)
Say "The original message was " Message
Say "The new message is " NewMsg

Will display:
The original message was Able was I ere I saw Elba
The new message is ablE was I ere I saw elbA

I used a palindrome here to illustrate a point: the case of the letters will
remain the same as they were.

Page [116]

Right

Purpose: Return the right "n" positions of a string.

Type: Rexx Function

Syntax: NewString = RIGHT(oldstring,quantity)
Where NewString is the rightmost quantityth positions of oldstring

Example: In the following code,
First8 = RIGHT("ABCDEFGHIJKLMN",8)

First8 will contain "GHIJKLMN"

See Also: Left

Page [117]

Say

Purpose: Display strings, literals, and numeric values

Type: Rexx Instruction

Syntax: Say anything

Usage: This command is probably the most commonly-used Rexx command. It is
used to display information to the user at the terminal. You can mix literals
and variables into the object that you are displaying.

Example:
Say "Hello, World. My name is Computer. What is your name?"
Pull YourName
Say "So, you say your name is" YourName"."
Say "How old are you, "YourName"?"
Pull YourAge
Say "Hmmmm..." YourAge", huh? That's pretty good. I used to be",
 YourAge "once, too!"
Say "Goodbye, "YourName", and have another wonderful "YourAge" years!"

The above example first asks you for your name, and then your age.

Page [118]

Select

Purpose: Rexx's implementation of the structured programming CASE construct.

Type: Rexx Instruction

Syntax: SELECT
WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
OTHERWISE instruction

END

Example:
SELECT

WHEN WeekDay = 1 THEN DOWWord = "Sunday"
WHEN WeekDay = 2 THEN DOWWord = "Monday"
. . . /* The rest of the days of the week */
OTHERWISE DOWWord = "Invalid"

END

Page [119]

Semi-Colon

Purpose: To stack instructions on a line

Syntax: instruction ; instruction ; instruction

Usage: Use this command to place more than one instruction on a line, especially
when they are "short" instructions. Stacking instructions on a line can
compact the body of a routine so you can see more of it at one time.
Sometimes, this can be a help instead of a deterrent.

Example 1:
Temperature = Random(1,100)
If temperature < 20 then do

 Weather = "Brutal";
 Like = "heck no!"
End
If temperature > 19 & temperature < 32 then do
 Weather = "Cold";
 Like = "no"
End
If temperature > 31 & temperature < 50 then do
 Weather = "Nippy";
 Like = "not really"
End
If temperature > 49 & temperature < 71 then do
 Weather = "so-so";
 Like = "so-so"
End
If temperature > 70 & temperature < 82 then do
 Weather = "warm";
 Like = "nice"
End
If temperature > 81 then do
 Weather = "hot";
 Like = "yes!"
End
Say "The temperature now is "temperature,
 " and the weather is "Weather"."
Say "Do I like it? "Like

In the above example, there are two short instructions in every If-then-do
group. They each take two lines.

Page [120]

Example 2:
Temperature = Random(1,100)
If temperature < 20 then do
 Weather = "Brutal"; Like = "heck no!"
End
If temperature > 19 & temperature < 32 then do
 Weather = "Cold"; Like = "no"
End
If temperature > 31 & temperature < 50 then do
 Weather = "Nippy"; Like = "not really"
End
If temperature > 49 & temperature < 71 then do
 Weather = "so-so"; Like = "so-so"
End
If temperature > 70 & temperature < 82 then do
 Weather = "warm"; Like = "nice"
End
 temperature > 81 then do
 Weather = "hot"; Like = "yes!"
End
Say "The temperature now is "temperature,
 " and the weather is "Weather"."
Say "Do I like this weather? "Like

In the above example, there are two short instructions in every If-then-do
group also. But since we stacked them on one line, we saved 6 lines in the
program. That made this routine more compact, and we can therefore see
more of the program on one screen. This technique, more importantly, did
not compromise the appearance or readability of this code.

Page [121]

Sigl

Purpose: Special TSO variable that contains the line number of the last instruction
that caused a jump to a label.

Usage: This variable is very useful for tracing and debugging purposes. It can tell
you exactly where you came from, without having to "drop breadcrumbs".

Example: The following exec:
Say "Hello. I am line 3"
Say "Hello. I am line 4"
Call Proc01
Say "Hello. I am line 6"
Signal Tag01
Tag01: Say "Hello. I am line 9; Sigl="Sigl
Exit
Proc01:
Say "Hello. I am line 13; Sigl="Sigl
Return

Will display:
Hello. I am line 3
Hello. I am line 4
Hello. I am line 13; Sigl=5
Hello. I am line 6
Hello. I am line 9; Sigl=7

Page [122]

Sign

Purpose: Return the arithmetic sign of a number

Type: Rexx Function

Syntax: Result = sign(number)

Usage: This function returns a 1 if the number is positive, and a negative 1 if it is
negative. It will return a zero if it is neither (a zero is considered neither
positive or negative).

Example 1:
Number = -3
Say "The sign of this number is " sign(Number)
Number = -1
Say "The sign of this number is " sign(Number)
Number = 0
Say "The sign of this number is " sign(Number)
Number = +1
Say "The sign of this number is " sign(Number)
Number = 2
Say "The sign of this number is " sign(Number)
Number = +3
Say "The sign of this number is " sign(Number)

The above example yields the following displays:
The sign of this number is -1
The sign of this number is -1
The sign of this number is 0
The sign of this number is 1
The sign of this number is 1
The sign of this number is 1

Page [123]

Signal

Purpose: To unconditionally branch (transfer control) to another part of the
program.

This instruction lends to "spaghetti code", and should therefore be used
only when it would make the code clearer. "Bailing out" of a complicated
routine is a good example.

Type: Rexx Instruction

Example: Signal Endit /* An error has occurred */

Endit:
Say "Program ending now due to error"

Exit

Note: I have found the signal instruction to be unreliable in some cases. In these cases, for
some reason, the signal statement simply fails to function. When this happens, the use of
switches to control processing is recommended. An example follows.

ErrorSw = 'N' /* Initialize the error switch */
Call Proc01 /* Perform routine 01 */
If ErrorSw = 'N' then
 Call Proc02 /* Perform routine 02 */
If ErrorSw = 'N' then
 Call Proc03 /* Perform routine 03 */

If an error occurred in either Proc01 or Proc02, instead of performing a "Signal" to the
end of the program, you could simply set the error switch to 'Y', and then conditionally
perform the rest of the program routines upon return.

Page [124]

Signal On

Purpose: Turn on error trapping.

Syntax: Signal On condition

See "Trapping Errors" in the Environment section of this manual for a
discussion of this instruction.

Page [125]

SourceLine

Purpose: Return the text of the program source

Type: Rexx Function

Syntax: Result = SOURCELINE(number)

Usage: This function will return the actual program text of the line number
supplied.

Example 1:
1 /* Test1 - Rexx Example Program */
2 Say "Hello World #1"
3 Say "Hello World #2"
4 Say "Hello World #3"
5 Say "Hello World #4"
6 Say "Hello World #5"
7 Say "Hello World #6"
8 Say "Hello World #7"
9 Say "Line three of the program is "SourceLine(3)

The above example will display the following:
Hello World #1
Hello World #2
Hello World #3
Hello World #4
Hello World #5
Hello World #6
Hello World #7
Line three of the program is Say "Hello World #2"

Page [126]

Space

Purpose: Adds blanks to or removes blanks from between words in a string.

Type: Rexx Function

Syntax: NewString = SPACE(OldString,quantity)
where NewString is the result of putting quantity blanks between every
word in OldString.

Usage: If quantity is "0", this function will remove all blanks from the string. The
function does not take into consideration how many spaces are already
between words. It sets the string to the quantity you supply. Therefore, this
instruction can be used to nicely format a sentence.

Example 1:
Greeting = "Merry Christmas to one and all"
NewGreeting = space(Greeting,0)
Say NewGreeting
NewGreeting = space(Greeting,1)
Say NewGreeting
NewGreeting = space(Greeting,2)
Say NewGreeting
NewGreeting = space(Greeting,3)
Say NewGreeting

This exec will display the following:
MerryChristmastooneandall
Merry Christmas to one and all
Merry Christmas to one and all
Merry Christmas to one and all

Page [127]

 Stack

Purpose: Serve as an "input queue" for TSO commands in a Rexx Exec

Usage: The Stack (or TSO stack, as it is more commonly called) is a storage area
used to hold TSO commands that are about to be executed. These TSO
commands were moved into the stack by either an individual keying them
in at the terminal, or by a Rexx program.

When a Rexx exec needs information, it first looks for it on the stack. If the
stack is empty, TSO will prompt the user (see example 1).

If you wish to read TSO commands directly, and bypass the stack, use
Parse External.

More than one TSO stack can be created. The number of TSO stacks is
limited only by the core available. Only the current TSO stack, though, is
the one that is the subject of operations.

The TSO stack can be shared by subroutines and by called programs.

If you read information into the stack and leave it there, then after your
Rexx exec ends, TSO will try to execute each item in the stack (see
example #2).

Several commands operate on or manipulate the stack:
Push Adds items to the stack
Pull Removes items from the stack
Queue Adds items to the stack
NewStack Establishes a new stack
DelStack Deletes the current (newest) stack
ExecIO Reads/writes a file or array into/from the stack
Each of the items above is documented in this manual in detail as their own
subjects.

Example 1:
1 NewStack
2 Push "Hello #1"
3 Pull Answer1
4 Say "I just learned" Answer1
5 Pull Answer2
6 Say "I just learned" Answer2

In this example,
1 Establishes a new stack
2 Puts the phrase "Hello #1" onto the stack
3 Gets (and removes) that phrase from the stack

Page [128]

4 Displays I just learned HELLO #1
5 Prompts the user for more input, since the stack is now empty
6 Displays whatever the user just typed in.

Example 2:
NewStack
Push "Hello #1"
Push "Hello #2"
Push "Hello #3"
Push "Hello #4"
Push "Hello #5"

This example will display the following:
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND

Page [129]

 Strip

Purpose: Removes leading or trailing spaces from a string.

Type: Rexx Function

Syntax: NewString = STRIP(OldString,option)
where NewString is the result of removing blanks from OldString based on
the setting of option.

Usage: The function will remove from the string:
Leading blanks (option = "L"),
Trailing blanks (Option = "T"), or
Leading and Trailing blanks (Option = "B")

Example 1:
Greeting = " Happy New Year to you "
NewGreeting = Strip(Greeting,"L")
Say NewGreeting
NewGreeting = Strip(Greeting,"T")
Say NewGreeting
NewGreeting = Strip(Greeting,"B")
Say NewGreeting

This exec will display the following results:
Happy New Year to you
 Happy New Year to you
Happy New Year to you

Page [130]

SubCom

Purpose: Poll TSO to see if a particular environment is available.

Type: TSO command

Syntax: Subcom environment

Usage: This command can be used to test to see if an environment is available
before issuing commands to it. For example, before you invoke the ISPF
editor on a dataset, it may be a good idea to first check to see if the system
has ISPF available (although this would be a good assumption).

This is the strongest reason that I could come up with for using this
command, which probably demonstrates why I have never used it in any of
my execs. In certain situations, there may indeed be a good reason to use
it.

See also: Address

Example:
"SubCom TSO"
If RC = 0 then Say "TSO is available"
Else Say "TSO is not available; RC=" RC
"SubCom ISPF"
If RC = 0 then Say "ISPF is available"
Else Say "ISPF is not available; RC=" RC
"SubCom Junk"
If RC = 0 then Say "Junk is available"
Else Say "Junk is not available; RC=" RC
"SubCom ISPEXEC"
If RC = 0 then Say "ISPEXEC is available"
Else Say "ISPEXEC is not available; RC=" RC
"SubCom ISREDIT"
If RC = 0 then Say "ISREDIT is available"
Else Say "ISREDIT is not available; RC=" RC
"SubCom CMS"
If RC = 0 then Say "CMS is available"
Else Say "CMS is not available; RC=" RC

The above exec will display the following:
TSO is available
ISPF is not available; RC= 1
Junk is not available; RC= 1
ISPEXEC is available
ISREDIT is available
CMS is not available; RC= 1

Page [131]

SubStr

Purpose: This is a Rexx built-in function that will return a portion of a string or
variable.

Type: Rexx Function

Syntax: var = SUBSTR(string,begin,length)
var Any variable name
string The object string (can be a literal also)
begin The beginning position of the string you wish to refer to
length Then length of the string you wish to refer to

Example: Section = substr(alphabet,4,5)
Where alphabet is a string containing all of the letters of the alphabet
After this instruction executes, the variable SECTION will contain
"DEFGH"

Page [132]

SubWord

Purpose: Returns a subset of a sentence

Type: Rexx Function

Syntax: NewString = SUBWORD(OldString,start,quantity)
where NewString is the result of copying quantity words from OldString,
starting at word number start.

Usage: Extract a fixed number of words from a sentence.

Example 1:
Phrase = "Fourscore and seven years ago, our
fathers..."
Extract = SUBWORD(Phrase,2,3)
Say Extract
Extract = SUBWORD(Phrase,7,3)
Say Extract

This example will display the following:
and seven years
fathers...

Page [133]

Symbol

Purpose: Tells if a character string is a variable, literal, or neither

Type: Rexx Function

Syntax: Result = SYMBOL(charstring)

Usage: According to "the book", this function will test a character string, and
return one of the following:
VAR If the character string is a valid variable name
LIT If the character string is a valid literal
BAD If neither of the above

I have found that this function will return only "LIT" or "BAD", based on
whether the supplied character string can comprise a valid variable name.

Example:
Result = SYMBOL(Myname)
Say Result
Myname = 4
Result = SYMBOL(Myname)
Say Result
Result = SYMBOL("**")
Say Result

Will display:
LIT
LIT
BAD

Page [134]

SYSDSN

Purpose: Return the status of a datasetname

Type: TSO external function

Syntax: Result = SYSDSN(datasetname)

Usage: This function can tell you whether a dataset appears in the catalogue,
whether a member name appears in a PDS, etc. It is not quite as
comprehensive as LISTDSI.

Consult the following chart for possible results.

Result Reason
DATASET NOT FOUND The datasetname was not in the catalogue
ERROR PROCESSING REQUESTED
DATASET
INVALID DATASETNAME The datasetname was invalid: Length > 44

chars, invalid chars, etc.
MEMBER NOT FOUND Looking for a member of a PDS, but it

was not found
MEMBER SPECIFIED, BUT DATASET
IS NOT PARTITIONED

Looking for a member of a PDS, but the
dataset is not a PDS

MISSING DATASETNAME SYSDSN(): no datasetname supplied
OK Disk dataset, in catalogue
PROTECTED DATASET
UNAVAILABLE DATASET
VOLUME NOT ON SYSTEM Tape dataset, in catalogue

See also: LISTDSI

Page [135]

 SYSVAR

Purpose: Return information about the system

Type: TSO external function

Syntax: Result = SYSVAR(infoRequest)

Usage: This function can tell you the current TSO user signed on to the system,
the name of the logon proc being used, and many other things.
Consult the following chart for a list.

InfoRequest Description
SYSCPU The number of CPU seconds used in this TSO session so far
SYSENV Thre environment you are currently executing in:

FORE for foreground; BACK for background (via JCL)
SYSHSM This will be the HSM release number. If HSM is not available, this will

be blank.
SYSICMD The name of the command or Rexx exec
SYSISPF ACTIVE if the ISPF dialogue manager is active. Test this variable in

your exec if it depends on ISPF services being available.
SYSLRACF RACF level, or spaces if not available
SYSLTerm Number of lines available on the terminal screen.
SYSNEST YES if executed from another exec or CLIST; NO if executed from

TSO.
SYSPCmd The most recently-executed TSO command from this exec. It will be

EXEC if there was none.
SYSPREF The prefix that TSO puts in front of unqualified datasetnames.
SYSPROC The name of the procedure that was used to log on to TSO
SYSRACF AVAILABLE, NOT AVAILABLE, or NOT INSTALLED
SYSSCmd The most recently-executed TSO sub-command. This is "the book"

explanation, but I find it to be always blank.
SYSSRV How many SRM units were used so far
SYSTSOE TSO/E level
SYSUID The TSO UserID of the currently-logged on user
SYSWTerm Number of columns available on the terminal screen. This is

LINESIZE+1

Page [136]

Time

Purpose: This is a REXX built-in function that will provide you with the current
time, in a variety of different formats.

Type: Rexx Function

Syntax: Result = Time(option)
Based on the specification of the Options below, "result" will contain the
time in the corresponding format, if the current time was 1:05pm (plus a
few seconds).

Option Meaning Format Example
(blank) normal (same as 'N') hh:mm:ss 13:05:13
C Civil hh:mm xm 1:05pm
E Elapsed (seconds and microseconds) sssssssss.mmm

mmm
111111.222222

H hour, 24-hour format hh 13
L long hh:mm:ss.dddd 13:05:13.090191
M Number of minutes since midnight nnnn 785
N normal hh:mm:ss 13:05:13
R Reset elapsed time 0
S Number of seconds since midnight nnnnn 47113

If you use an unsupported option, for example "A", you will see an error message similar
to the following:
 5 +++ Say "The time now is " Time(A)
Error running AskTime, line 5: Incorrect call to routine

This command can also be used for measuring elapsed time. The first time this command is
issued with either the 'E' or 'R' option, the elapsed time counter is started. Every
subsequent issuance of the command with either of these options will return the elapsed
time since the first issuance of Time('E') or the last issuance of Time('R'). Issuing the
command with option 'R' will reset the elapsed time counter, but only after it returns the
elapsed time.

The following example demonstrates the use of elapsed time.
Dummy = Time(E) /* Start time */
Say "I am waiting for you to hit enter!"
Pull Answer
Duration = Time('E')
Say "Point1:" Duration "seconds!"
Duration = Time('E')
Say "Point2:" Duration "seconds!"
Duration = Time('R')
Say "Point3:" Duration "seconds!"
Duration = Time('E')
Say "Point4:" Duration "seconds!"

Page [137]

Say "Point5:" Time('E') "seconds!"

This exec will display something like this:
I am waiting for you to hit enter!
Point1: 1.200962 seconds!
Point2: 1.203493 seconds!
Point3: 1.205070 seconds!
Point4: 0.001185 seconds!
Point5: 0.002150 seconds!

Page [138]

Trace

Purpose: List instructions as they are executed; variables as they are set

Type: Rexx Function

See “Debugging” for a discussion on this subject

Page [139]

Translate

Purpose: Convert characters to other characters

Type: Rexx Function

Syntax: Result = TRANSLATE(ObjectString,String2,String1)

Usage: Convert all occurrences of ObjectString that appear in String1 to the
corresponding character in String2.

Example 1: I find this a difficult command to conceptualize, to explain, or to
remember, so a very detailed example is necessary here.

Say TRANSLATE("ABCDEFGHIJ","1234567890","DAVE")

Would result in:
2BC14FGHIJ

Because:
String1 = "DAVE______"

String2 = "1234567890"

ObjectString = "ABCDEFGHIJ"

Result = "2BC14FGHIJ"
In ObjectString, the first character, A, appears in String1. So that A in
ObjectString is replaced by 2, which is the character in String2 that
corresponds to the character in String1.
The next character in ObjectString does not appear in String1, so it is not
converted. The same applies to the third.
The fourth character in ObjectString (D), however, does appear in String1.
So that D in ObjectString is replaced by 1, which is the character in String2
that corresponds to the character in String1.
To visualize how this command works, and how to make it work for you,
just lay String1 on top of String2, like I have here.

Page [140]

Example 2: In this scenario, it turns out that the English teacher mistakenly gave the
class the wrong test: it was one grade level too high. So now, she wants to
push everyone's grade up one notch, instead of making everyone re-take
the test. First, let's lay out String 1 and String 2:
String1 = 'BCDF'
String2 = 'ABCD'
Then code the Rexx exec, as follows:
OldGrades = "BBCCBDFDDFD"
NewGrades = TRANSLATE(OldGrades,"ABCD","BCDF")
Say "The old grades were" OldGrades
Say "The new grades are " NewGrades

which will result in:
The old grades were BBCCBDFDDFD
The new grades are AABBACDCCDC

Page [141]

 Trunc

Purpose: Return a number with a specified number of decimal places

Type: Rexx Function

Syntax: NewNumber = TRUNC(Number,DecimalPlaces)
where NewNumber is Number with DecimalPlaces decimal places.

Usage: This command could have been called Decimal Places, because that
applies more than Trunc. The command will add or remove positions based
on the specification of decimal places.

Examples:
Say Trunc(1.12345,0)
Say Trunc(1.12345,4)
Say Trunc(1,4)

Will display:
1
1.1234
1.0000

Page [142]

 Upper
Purpose: Convert a character string to upper case

Type: Rexx Instruction

Syntax: UPPER variable1 {variable2} {variable3}...

Examples: fname='George'; lname='Bush'
Upper fname lname
Say lname ',' fname /* displays "BUSH , GEORGE" */

See also: Parse Upper Arg

Page [143]

UserID

Purpose: Return the TSO UserID of the resource who is currently logged on to the
system

Type: Rexx Function

Usage: This is commonly used to determine access priviledges.

Examples:
Say "Your userID is" UserID()

Could display:
Your userID is DGRUND01

Page [144]

Value

Purpose: Returns the contents of a variable after resolving it. The main purpose for
this function is to resolve a dynamically-created variable.

Type: Rexx Function

Syntax: NewVar = VALUE(variable)

Usage: There is a subtle difference between using VALUE(variable) and just the
variable itself. Value will convert the contents of a variable to upper case
while resolving it.

Simple example:
Name = "Dave"
Say "My name is "value(Name)
Say "My name is "Name

The above exec will display:
My name is DAVE
My name is Dave

Example of resolving a dynamically-created variable.
In one particular Rexx exec, I create ten arrays, named Array01, Array02, ...

Array10. We wish to perform the same processing on each array, so we use a subroutine,
or what is more commonly known as a procedure.

Example pending

Page [145]

Variables

Purpose: To retain values for use later in the program. A variable can hold any type
of value: character, numeric, hex, binary, etc.

Syntax: A variable must start with a character (never a number), and certain special
characters. The rest of the variable can contain alphabetic characters,
numbers, and certain special characters.

Some special characters that can appear in a variable name are as follows:
@ __ # $!

Some special characters that can not appear in a variable name are as
follows:
% &

For any other special characters, you're on your own. Try it out; it can't
hurt.

A variable name can be up to 250 characters long.

Usage: A variable in Rexx does not get declared. It is assigned a value by using it
on the left side of an assignment statement, or with the use of certain Rexx
instructions. A variable is not a variable until it is given a value. Note that
until a variable is given a value, it is a literal. If a variable's value is
removed (with the "Drop"), it is then converted back to a literal.

If you happen to see a variable name appear in your output unexpectedly,
there is a good chance that you misspelled either it, or the one that you
initialized.

Example: My_name = "John Smith"

Page [146]

Variables, Compound

Purpose: To act as a variable, with an added benefit. The same variable name can be
used to contain any number of similar values. This is a very powerful
feature of Rexx, and is very simple to implement. This feature is commonly
used to construct an array.

Syntax: Same as regular variables, but with a period and a suffix added to the end.

Usage: Simply assign a value to the nth element of the array. The "0th" element is
used to contain the number of elements in the array.

Example: The following excerpt from a Rexx exec:
Name.1 = "Mary"
Name.2 = "Joe"
Name.3 = "Alice"
Name.4 = "Smokey"
Name.0 = 5 /* Establish no. of elements */

 Say "There are "name.0" elements in this array"
Do I = 1 to Name.0
 Say Name.I
End

Will yield the following results:
Mary
Joe
Alice
Smokey
NAME.5

Page [147]

Verify

Purpose: Tells whether certain characters are contained in a given chracter string

Type: Rexx Function

Syntax: Result = VERIFY(FindString,ObjectString)
Result is the first position of FindString that does not appear in
ObjectString.

Usage: If Result is zero, then all of FindString appears somewhere in ObjectString.
Both strings are case-sensitive: a lower-case letter will not match an upper-
case, and vice-versa.

Example:
Say Verify('I','TEAM')
Say Verify('Scienc',"ConSciencious")
Say Verify('fat',"indefatigable")
Say Verify('hillary','hilarious')

Will display:
1 (There is no "I" in "TEAM")
0
0
7

Page [148]

Word

Purpose: Returns the nth word of a string.

Type: Rexx Function

Syntax: Result = WORD(phrase,n)
Result is the nth word of phrase.

Usage: If n is greater than the number of words in the phrase, result will contain
blanks. If n is zero, the function will err out.

Example:
Say Word("Merry Christmas and Happy New Year",2)
Say Word("Merry Christmas and Happy New Year",7)
Say Word("Merry Christmas and Happy New Year",0)

Will display:
Christmas

 3 +++ Say Word("Merry Christmas and Happy New Year",0)
Error running Test1, line 3: Incorrect call to routine

Page [149]

WordIndex

Purpose: Return the character position of a word in a string

Type: Rexx Function

Syntax: Position = WORDINDEX(string,n)
where Position is the character number of the nth word in string.

Usage: This function will return the character position where a particular word
starts in a string.

Example:
Answer = WordIndex("Merry Christmas and Happy New Year",5)
Say Answer

Would display
27

The 5th word of the string is New, which starts at character position
number 27.

Page [150]

WordLength

Purpose: Return the length of a word in a string

Type: Rexx Function

Syntax: Answer = WORDLENGTH(string,n)
where Answer is the length of the nth word in string.

Usage: This function returns the length (number of characters) of a word in a
string.

Example:
Answer = WordLength("Merry Christmas and Happy New Year",5)
Say Answer

Would display
3

The 5th word of the string is "New", whose length is 3.

Page [151]

WordPos

Purpose: Return the position of a word or phrase in a string

Type: Rexx Function

Syntax: Answer = WORDPOS(phrase,string)
where Answer is the length of the nth word in string.

Usage: This function returns the word position of a phrase in a string.

Example:
Answer = WordPos('and Happy',"Merry Christmas and
Happy New Year")
Say Answer

Would display
3

Page [152]

Words

Purpose: Returns a count of the words in a string

Type: Rexx Function

Syntax: Answer = WORDS(string)

Example:
Answer = Words("Merry Christmas and Happy New Year")
Say Answer

Would display
6

Page [153]

XRange

Purpose: Return a string of characters between two characters in the ASCII
character set.

Type: Rexx Function

Syntax: Result = XRange(startchar,endchar)
startchar-The first ASCII character that will be returned. The default is
low-value (X'00').
endchar- The last ASCII character that will be returned. the default is high-
value (X'FF').

Usage: This function will return all of the characters in the ASCII Character set
between startchar and endchar, inclusive. If startchar is greater than
endchar, then the string that is returned will wrap around through the
beginning.

Example 1 The following example will not return the letters in the alphabet as a string.
This is unfortunate, because the function would be a little more useful if it
considered only valid characters.
Alphabet = XRange('A','Z')
Say Alphabet

The reason for this is that the leters of the alphabet do not appear
continuously in the ASCII character set. What would be returned would be
the ASCII characters represented by X'C1' through X'E9', inclusive:
ABCDEFGHI.......JKLMNOPQR........STUVWXYZ

Example 2 The following example will return the alphabet.
Alphabet = XRange('A','I')XRange('J','R')XRange('S','Z')
Say Alphabet

Page [154]

X2C

Purpose: Converts a hexadecimal string to character

Type: Rexx Function

Syntax: CharString = X2C(hexstring)

Example:
Answer = X2C('C4C1E5C560F1F6F1F6')
Say Answer

Would display
Dave-1616

Page [155]

X2D

Purpose: Converts a hexadecimal string to decimal

Type: Rexx Function

Syntax: Number = X2C(hexstring)

Example:
Answer = X2D('FF')
Say Answer

Would display
255

Answer = X2D('FFFF')
Say Answer

Would display
65535

Page [156]

Instructions Not Covered

Certain instructions, commands, and functions are seldom, if at all, used in
applications. These are used by system administrators and system programmers. These
instructions, commands, and functions are listed here. Why are they even mentioned, if we
are not going to document them?

They are listed, for the most part, let you know (and to remind me) that they are
indeed available, if we want to use them or learn more about them. Documentation of
these instructions, commands, and functions is beyond the scope of this manual. Check the
appendix for additional sources of documentation.

DropBuf Delete a data stack buffer

ExecUtil Control Rexx processing options for the current Rexx environment

MakeBuf Add a buffer to the data stack

Options This instruction is used for DBCS (Double-Byte Character Set) character
and data operations support.

Qbuf determine the number of data stack buffers that exist

Qelem Determine the number of data stack elements that exist

Storage Retrieve a number of bytes from a main storage address, or store a number
of bytes into a main storage address.

Page [157]

Section II -A Starter Rexx Tutorial

Page [158]

Follow this tutorial by keying in the example Rexx execs and reading the
associated commentary. If your results are not identical to those of the tutorial, try to find
out exactly why. Each example builds on the previous ones, so it is important that you
understand each before you move on.

/* Rexx Exec Tutorial #1 */
Say "Hello World"

This is one of the shortest Rexx execs ever written. All it does is display the famous
programmer's primer message.

/* Rexx Exec Tutorial #2 */
Say "What is your name?"
Pull Answer
Say "So, your answer is " Answer". That is swell!"

This exec will ask you your name, and if you reply, it will echo it back, something like this:
So, your answer is JOHNNY. That is swell!

/* Rexx Exec Tutorial #3 */
Say "What is your name?"
Pull Answer

Say "So, "Answer", how old are you?"
Pull Age
AgeIndays = Age * 365
Say "If you didn't lie to me, you are about" AgeInDays "days old."

This exec will ask you your name, and then perform a calculation. Notice that I used an
apostrophe within a string that was enclosed in quotation marks. The exec's last display
would look like this:
If you didn't lie to me, you are about 8030 days old.

From here, the possibilities are endless. Rather than waste your (and my) time by making
you go through endless and pointless exercises, I will stop here, and let you get started
with playing with some ideas of your own. Just remember: have fun!

Page [159]

Section III - Rexx Examples

Page [160]

I believe strongly in examples. No matter what someone is trying to say, it is
clearer if it can be illustrated with a good example. A person can then glean an
interpretation from that example.

The easiest way to write a Rexx exec is to take one that exists, and tailor it for
your own use. Remember that like with any programming language, if you copy someone's
source code verbatim, it's not ethically cool to put your name on it. If you use a major
portion of source code that is provided to you for free, it is only fair to at least give credit
to the author somewhere in your program. All of these examples were written by David
Grund Sr., and are free to use.

The examples provided here vary in purposes, but can be tailored to most specific
needs that you have. They don't necessarily demonstrate the best way to write a Rexx exec
in all cases. They do, however, demonstrate different techniques.

In some cases, some of the execs depend on data from ISPF libraries. That data is
not included.

Disclaimer: All examples are provided for the sake of example only. There is no
guarantee that these work as desired, or are entirely bug-free. You are free to, and
encouraged to, develop and improve any or all of these examples.

Please respect an author's inventiveness and hard work. Since Rexx execs are
distributed with the source, if you publish any new Rexx execs that you created using an
existing one as a basis, you are requested to at least credit the author.

Page [161]

The examples provided here are as follows:

ALLOCEIO Allocate O/P dataset; write Rexx array to it
CAPTSO Capture TSO command output
CHGBLKC Insert a COBOL change block
CHGDATA Modify a data file
CHGSTEP Change steps in JCL
COMMANDS List available commands
COMPCO Compare two files of order numbers
COMPDS Compare two sequential datasets
COMPPDS Compare two PDS's
DD Add a DD Statement
DELDUPS Delete duplicate records
DURATION Time an EXEC
FIXJCL Fix Job Control
FX File name cross-reference
HD Hex Dump
INIT Establish my TSO environment
INITSPF Establish my ISPF environment
JOBCARD Create a jobcard
JUMBLE Display all combinations of letters
LA List TSO allocations
LISTDSI List dataset information
LOTTERY Pick lottery numbers
LPDSIX List a PDS Index to a Sequential File
PROCSYMS Perform symbolic substitution
PTS PDS-to-Sequential; member name is prefix
PTS2 PDS-to-Sequential; member name is inserted
REXXMODL Rexx Exec Model
SCALE Display a Scale
SDN Sorted Directory w/Notes; directory annotator
SHOWDUPS Show duplicate records
STACK Start another ISPF session
TIMEFMTS Show all time formats
TIMETOGO Display time until an event

Page [162]

ALLOCEIO - Allocate O/P dataset; write array to it

This is a code snippet that will allocate a TSO dataset, and then write a Rexx array
to that dataset. The TSO dataset is deleted first, in case it already exists.

 "Delete "MapDSN
 "Allocate DD(FiCvtDS) DA("MapDSN") new space(1 1) tracks",
 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

 "ExecIO" MapArray.0 "DiskW FiCvtDS (STEM MapArray. FINIS"
 "Free DDNAME(FiCvtDS) DA("MapDSN")"

Page [163]

CAPTSO - Capture TSO command output

Using this exec, you can capture the output from just about any TSO command.
The purpose, of course, is to dump it into a dataset and edit it.

/* CapTSO - Capture TSO Output - Rexx Exec */
/* Written by Dave Grund */

Dummy = OutTrap("output_line.","*")
"LISTd 'GRUND.ASSEMBLY.DATA' m"
NumLines = OutPut_Line.0
Say NumLines "lines were created"
Dummy = OutTrap("OFF")

"Delete CAPTSO.List"
"Allocate DD(CapTSO) DA(CAPTSO.List) new space(15 15) tracks",
 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

"ExecIO" OutPut_line.0 "DiskW CapTSO (STEM OutPut_Line. FINIS"
"Free DDNAME(CapTSO) DA(CAPTSO.List)"

ADDRESS "ISPEXEC" "EDIT Dataset(CAPTSO.List) "

Page [164]

CHGBLKC - Insert a COBOL change block

This Rexx exec is an ISPF edit macro, used to insert a program modification
comment block into a program. By using this exec, you can make the comment block will
look the same for every program, hence an increase in productivity. This technique, of
course, can be used for any language. I have created one for Easytrieve and another for
Assembler.

/* ChgBlkC - Insert COBOL Change Block - ISPF Edit Macro (REXX EXEC) */
ADDRESS "ISREDIT" "MACRO PROCESS"
J11= "000001*---"
J12= "--------------------*"
J21= "000002* PROGRAM MODIFICATION LOG "
J22= " *"
J31= "000003* LOG # DATE WHO REASON "
J32= " *"
J41= "000004* 9 06/09/95 DAVE GRUND change descrip"
J42= "tion line 1 *"
J51= "000005* change descrip"
J52= "tion line 2 *"
address "ISREDIT" "LINE_AFTER 0 =" "'"J11""J12"'"
address "ISREDIT" "LINE_AFTER 1 =" "'"J21""J22"'"
address "ISREDIT" "LINE_AFTER 2 =" "'"J31""J32"'"
address "ISREDIT" "LINE_AFTER 3 =" "'"J41""J42"'"
address "ISREDIT" "LINE_AFTER 4 =" "'"J51""J52"'"
address "ISREDIT" "LINE_AFTER 5 =" "'"J11""J12"'"
ADDRESS "ISREDIT" "Cursor = 1 0"
address "ISREDIT" "LINE_AFTER 0 = MSGLine",
 "' "Please move these lines into the Remarks section."'"

Page [165]

CHGDATA - Modify a data file

This exec is used to modify a data file. It reads a data file into core (an array),
modifies it (with hard-coded instructions), and then writes it back out. This is an exec that
is tailored for use each time it is used.

/* ChgData - Change a File - REXX Exec */
/* Written by Dave Grund */
/* This exec will read a data file, and modify it to contain */
/* conditions for testing: invalid data, etc */

/*------------- Main Body of Program ----------------------------*/
ARG IPDSN OPDSN
IPCtr = 0 /* Input record counter */
OPCtr = 0 /* Output record counter */

Call Pgm_Init

Do Forever
 Call ReadRec /* Read rec into stack; count */
 If IPEOF = "YES" then Leave
 Pull IPRec /* Get it from the stack */
 Call ProcessRecord /* Process it */
end

Call ProcEOJ /* EOJ Processing */
Exit
/*---*/

/*------------*/
/* Program Initialization */
/*------------*/
Pgm_Init:
"DelStack"
If IPDSN = "" then do
 Say "Command Type:

Syntax: ChgData IpDSN OpDSN"
 Exit
end

If OPDSN = "" then do
 OpDSN = IPDSN||.Modified
 Say "OPDSN not specified;" OPDSN "assumed."
end

"Alloc DDN(InFile) DSN("IPDSN") SHR"
If RC <> 0 then do
 Say "I could not allocate "IPDSN". Sorry."
 Exit
end

Dummy = ListDSI(IPDSN)
OPLRECL = SYSLRECL
OPBLKSize = SYSBlkSize

"Delete " OPDSN
"Free FI(OutFile)"

Page [166]

"Alloc DD(OutFile) DA("OPDSN") New space(15 15) tracks ",
 "Lrecl("OPLRECL") Block("OPBlkSize") Recfm(F B)"
If RC <> 0 then do
 Say "I could not allocate "OPDSN". Sorry."
 Exit
end
Return

/*------------*/
ReadRec:
/*------------*/
 "EXECIO 1 DiskR Infile" /* Add the I/P rec to the stack */
 If RC <> 0 then do
 IPEOF = "YES"
 "EXECIO 0 DiskR Infile (Finis" /* Close the input file */
 end
 Else IpCtr = IpCtr + 1 /* Count the records */
 Return ""

/*------------*/
/* Process the Record */
/*------------*/
ProcessRecord:
 OpRec = IpRec

 If IpCtr = 11 then /* Make the class invalid */
 OPRec = Substr(IPRec,1,9)||"0XRJC"||Substr(IpREc,15,307)

 If IpCtr = 16 then /* Make the class invalid */
 OPRec = Substr(IPRec,1,9)||"123456789"||Substr(IpREc,19,303)

 If IpCtr = 22 then /* Nom-transfer pack */
 OPRec = Substr(IPRec,1,24)||"XYZ"||Substr(IpREc,28,294)

 If IpCtr = 33 then /* Nom-minimum */
 OPRec = Substr(IPRec,1,27)||"ABC"||Substr(IpREc,31,291)

 If IpCtr = 44 then /* Store Number */
 OPRec = Substr(IPRec,1,33)||"DE"||Substr(IpREc,36,286)

 If IpCtr = 55 then /* Store quantity */
 OPRec = Substr(IPRec,1,36)||"GHIJ"||Substr(IpREc,41,281)

 If IpCtr = 57 then /* Warehouse Number */
 OPRec = Substr(IPRec,1,313)||"89"||Substr(IpREc,316,6)

 If IpCtr = 32 then /* Warehouse quantity */
 OPRec = Substr(IPRec,1,315)||"DAVEG "

 Push OpRec
 "EXECIO" 1 "DiskW OutFile"
 OpCtr = OpCtr + 1 /* Count the records */
Return

/*------------*/
/* End-of-job Processing */
/*------------*/
ProcEOJ:
 "DelStack"
 "EXECIO" 0 "DiskW OutFile (Finis" /* Close the file */

Page [167]

 "Free DDNAME(InFile OutFile)"
 Say "*** End of Job Totals ***"
 Say IpCtr "records read"
 Say OpCtr "records written"
Return

Page [168]

CHGSTEP - Change steps in JCL

When you have religiously numbered the steps in a job stream, and find that you
have to insert a few, especially toward the beginning, your neatly-sequenced step names
are compromised.

This Rexx exec will "quickly" renumber the steps so they are back in sequence and
incremented by 10.

Here, you are creating the list of TSO commands that you will use to ultimately
make the changes. Creating a TSO command set is less stressful than making the changes
one-by-one. This way, you don't have to remember where you left off, and you can use
ISPF's editor to mass-produce the change statements.

/* CHGSTEP - RENUMBER STEPS IN A JOB - REXX EXEC */

ADDRESS "ISREDIT" "MACRO PROCESS"
ADDRESS "ISREDIT" "C STEP190 STEP330 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP185 STEP320 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP180 STEP310 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP170 STEP300 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP160 STEP290 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP150 STEP280 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP140 STEP270 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP130 STEP260 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP120 STEP250 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP110 STEP240 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP100 STEP230 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP096 STEP220 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP095 STEP210 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP090 STEP200 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP080 STEP190 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP070 STEP180 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP060 STEP170 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP050 STEP160 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP040 STEP150 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP038 STEP140 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP037 STEP130 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP036 STEP120 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP035 STEP110 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP034 STEP100 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP033 STEP090 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP032 STEP080 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP031 STEP070 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP025 STEP060 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP024 STEP050 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP023 STEP040 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP022 STEP030 WORD ALL 10"

Page [169]

COMMANDS - List available commands

This is a very simply Rexx exec, but is very useful. I write so many little Rexx
execs that sometimes I forget what the names of them are. So every time I write a new
Rexx exec, I update a Rexx exec called "Commands". Then, when I need to remember a
command name, I simple execute the "Commands" command, and it produces a list for
me.

This is provided as a suggestion more than as an example.

/* Commands - Rexx Exec */
/* The commands available via Dave Grund's REXX Exec are: */
Say "ISPF Edit Macros:"
Say "CB - Cursor Browse, ISPF macro"
Say "CE - Cursor Edit, ISPF macro"

Say "TSO Commands"
Say "CompDS - Compare two sequential datasets"

Page [170]

COMPCO - Compare Two Files of Order Numbers

/* CompCO - Compare Two Files Of Order Numbers - Rexx */
/* Written by Dave Grund */

IPDSN1 = "'DGrund.STEP120.SYSUT2'"
IPDSN2 = "'DGrund.STEP140.SYSUT2'"

Call Proc01 /* Program Initialization */
Call Proc02 /* List First File to an Array */
Call Proc03 /* List Second File to an Array */
Call Proc04 /* Compare files now */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say "CompCO - Compare Two Files of Order Numbers"
 Say "Proceeding..."
Return

/*------------*/
/* Read first file into core */
/*------------*/
Proc02:
 "Free fi(sysut1)"
 "Allocate Fi(SYSUT1) DA("IPDSN1") shr"
 "ExecIO * DiskR SYSUT1 (STEM File1Lines. FINIS"
 "Free FI(SYSUT1)"
 Say File1Lines.0 "records read from FILE2"
Return

/*------------*/
/* Read second file into core */
/*------------*/
Proc03:
 "Free fi(sysut2)"
 "Allocate Fi(SYSUT2) DA("IPDSN2") shr"
 "ExecIO * DiskR SYSUT2 (STEM File2Lines. FINIS"
 "Free FI(SYSUT2)"
 Say File2Lines.0 "records read from FILE1"
Return

/*------------*/
/* Compare the arrays now */
/*------------*/
Proc04:
 File1Rec = 1; File2Rec = 1;
 Call ReadFile1 /* Read first record from File 1 */
 Call ReadFile2 /* Read first record from File 2 */
 InFile1Only = 0; Infile2Only = 0; InBoth = 0;

 Do Forever

Page [171]

 /* Say "Comparing " File1Line "to" File2Line */
 If File1Line = File2Line then do
 If File1Line = "99999" then Leave
 /* Say File1Line" in both files" */
 InBoth = InBoth + 1
 Call ReadFile1 /* Read next record from File 1 */
 Call ReadFile2 /* Read next record from File 2 */
 End
 Else If File1Line < File2Line then do
 InFile1Only = InFile1Only + 1
 Say File1Line" in FILE2 but not in FILE1"
 Call ReadFile1 /* Read next record from File 1 */
 End
 Else do
 Infile2Only = Infile2Only + 1
 Say File2Line" in FILE1 but not in FILE2"
 Call ReadFile2 /* Read next record from File 2 */
 End
 End
Return

/*------------*/
/* Read a record from File 1 */
/*------------*/
ReadFile1:
 If File1Rec > File1Lines.0 then
 File1Line = "99999" /* "end of file" */
 Else DO
 File1Line = left(File1Lines.File1Rec,5)
 File1Rec = File1Rec + 1;
 End
Return

/*------------*/
/* Read a record from File 2 */
/*------------*/
ReadFile2:
 If File2Rec > File2Lines.0 then
 File2Line = "99999" /* "end of file" */
 Else Do
 File2Line = left(File2Lines.File2Rec,5)
 File2Rec = File2Rec + 1;
 End
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say "In FILE2, not in FILE1:" ForMat(InFile1Only,5)
 Say "In FILE1, not in FILE2:" Format(InFile2Only,5)
 Say "In Both :" ForMat(InBoth,5)
Return

Page [172]

COMPDS - Compare two sequential datasets

This exec will call IEBCOMPR to compare two datasets. You don't get a
comprehensive and detailed listing of differences. Instead, you get notification as to
whether the two datasets contain exactly the same data- a check that is required in a
parallel test.

/* Compare - Compare Two Datasets - Rexx Exec */
/* Written by Dave Grund */

Arg IPDSN1 IPDSN2
If Arg() == 0 then do
 Say "Compare - Compare two TSO datasets"
 Say " Type:

Syntax: Compare IPDSN1 IPDSN2"
 Say " Please reenter this command"
 Exit
End

If SYSDSN(IPDSN1) = "OK" then nop
Else do
 Say "I cannot find "IPDSN1
 Exit
End

If Arg(2) == '' then nop
Else do
 Say "Please enter the name of the second dataset"
 Pull IPDSN2
End

If SYSDSN(IPDSN2) = "OK" then nop
Else do
 Say "I cannot find "IPDSN2
 Exit
End

"Free fi(sysut1,sysut2,sysin,sysprint)"
"Allocate Fi(SYSUT1) DA("IPDSN1") shr"
"Allocate Fi(SYSUT2) DA("IPDSN2") shr"
"Allocate Fi(SYSIN) DUMMY"
"Allocate Fi(SYSPRINT) DA(*)"
"Call 'SYS1.Linklib(IEBCOMPR)'"

Page [173]

COMPDSE – Compare Two Sequential Datasets - Enhanced

This exec will compare two sequential datasets, line-for-line, and report diferences.
Neither file is assumed to be in any kind of sequence. This differes from COMPDS in that
it does not call IEBCOMPR; it does the compares internally.

The best thing about this tool is that it can be copied and modified for specialized
file compare needs.

/* COMPDSE - Compare Two Datasets - Enhanced REXX */
/* Written by Dave Grund */

/* This exec will compare two sequential datasets, line-for-line.
 We do not regard the input file's sequence. */
 ARG IPDS1 IPDS2

Call Proc01 /* Program Initialization */
Call Proc02 /* Copy both datasets to an array */
Call Proc04 /* Compare files now */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say; Say; Say
 Say "CompDSE - Compare Two Datasets - Enhanced"
 If IPDS1 = "" ³ IPDS2 = "" then do
 Say "Command Syntax: CompPDS IPDS1 IPDS2"
 Exit
 End
 Say "Comparing "IPDS1 "to" IPDS2
 Say "Proceeding..."
Return

/*------------*/
/* Copy both datasets to arrays */
/*------------*/
Proc02:
 X = OutTrap("ON"); "Free Fi(IpFile) DA("IPDS1")"; X=OutTrap("OFF")
 "Alloc FI(IPFile) DA("IPDS1") SHR"
 If RC > 0 then exit
 "ExecIO * DiskR IPFile (Stem DS1Lines. Finis "
 "Free FI(IPFile)"
 X = OutTrap("ON"); "Free Fi(IpFile)"; X=OutTrap("OFF")
 Say DS1Lines.0 "lines were found in" IPDS1

 X = OutTrap("ON"); "Free Fi(IpFile) DA("IPDS2")"; X=OutTrap("OFF")
 "Alloc FI(IPFile) DA("IPDS2") SHR"
 If RC > 0 then exit
 "ExecIO * DiskR IPFile (Stem DS2Lines. Finis "
 "Free FI(IPFile)"

Page [174]

 X = OutTrap("ON"); "Free Fi(IpFile)"; X=OutTrap("OFF")
 Say DS2Lines.0 "lines were found in" IPDS2
Return

/*------------*/
/* Compare the files now */
/*------------*/
Proc04:
 CtrEquals = 0; CtrNEquals = 0;
 Do I = 1 to DS1Lines.0
 If DS1Lines.I = DS2Lines.I then
 CtrEquals = CtrEquals + 1
 Else do
 CtrNEquals = CtrNEquals + 1
 Say "Records #"I" differ:"
 Say "IPDS1: "DS1Lines.I
 Say "IPDS2: "DS2Lines.I
 Say
 End
 End
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say CtrEquals "records were identical"
 Say CtrNEquals "records were different"
Return

Page [175]

COMPPDS - Compare two PDS's

This command will compare two partitioned datasets. One is considered a "test"
PDS; the other is considered a "production" PDS.

/* COMPPDS - Compare PDS's - REXX Exec */
/* Written by Dave Grund */
 ARG TestPDS ProdPDS

/* This command will compare a "Test" PDS against a "Production" PDS.*/

Call Proc01 /* Program Initialization */
Call Proc02 /* List First PDS Members to an Array */
Call Proc03 /* List Second PDS Members to an Array */
Call Proc04 /* Compare files now */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say "CompPDS - Compare PDS's"
 If TestPDS = "" | PRODPDS = "" then do
 Say "Command Type:

Syntax: CompPDS TestPDS ProdPDS"
 Exit
 End
 Say "Comparing "TestPDS "to" ProdPDS
 Say "Proceeding..."
Return

/*------------*/
/* List Members of TestPDS */
/*------------*/
Proc02:
 /* Say "Reading "TESTPDS"..." */
 Dummy = OutTrap("TestMems.","*")
 "LISTD " TestPDS "M"
 NumLines = TestMems.0 - 6
 Say NumLines "Member names were found in" TestPDS
 Dummy = OutTrap("OFF")

 NumTestRecs = TestMems.0 + 1
 /* Clean up the array */
 Do I = 1 to 6 ; TestMems.I = "" ; End
 Do I = 7 to TestMems.0
 TestMems.I = strip(TestMems.I)
 End
Return

/*------------*/
/* List Members of ProdPDS */
/*------------*/

Page [176]

Proc03:
 /* Say "Reading "ProdPDS"..." */
 Dummy = OutTrap("ProdMems.","*")
 "LISTD " ProdPDS "M"
 NumLines = ProdMems.0 - 6
 Say NumLines "Member names were found in" ProdPDS
 Dummy = OutTrap("OFF")

 NumProdRecs = ProdMems.0 + 1
 /* Clean up the array */
 Do I = 1 to 6 ; ProdMems.I = "" ; End
 Do I = 7 to ProdMems.0
 ProdMems.I = strip(ProdMems.I)
 End
Return

/*------------*/
/* Compare the member names now */
/*------------*/
Proc04:
 TestCurrRec = 6; ProdCurrRec = 6;
 Call ReadTest /* Read first record from TestPDS */
 Call ReadProd /* Read first record from ProdPDS */
 InTestOnly = 0; InProdOnly = 0; InBoth = 0;

 Do Forever
 /* Say "Comparing " TestMem "to" ProdMem */
 If TestMem = ProdMem then do
 If TestMem = "99999999" then Leave
 If TestMem = " " then nop
 Else do
 InBoth = InBoth + 1
 Call CompMembers /* Compare the members */
 End
 Call ReadTest /* Read next record from TestPDS */
 Call ReadProd /* Read next record from ProdPDS */
 End
 Else If Testmem < ProdMem then do
 InTestOnly = InTestOnly + 1
 Say TestMem" in " TestPDS "but not in "ProdPds
 Call ReadTest /* Read next record from TestPDS */
 End
 Else do
 InProdOnly = InProdOnly + 1
 Call ReadProd /* Read next record from ProdPDS */
 End
 End
Return

/*------------*/
/* Compare the members, line for line */
/*------------*/
CompMembers:
 /* First, normalize the datasetnames */
 If Left(TestPDS,1) = "'" then do
 TestIPDSN = strip(TestPDS)
 TestIPDSN = DelStr(TestIPDSN,1,1)
 IDLen = length(TestIPDSN)
 TestIPDSN = DelStr(TestIPDSN,IDLen,1)
 end

Page [177]

 else
 TestIPDSN = TestDSN
 TestIPDSN = "'"||TestIPDSN||"("||TestMem||")'"
 If Left(ProdPDS,1) = "'" then do
 ProdIPDSN = strip(ProdPDS)
 ProdIPDSN = DelStr(ProdIPDSN,1,1)
 IDLen = length(ProdIPDSN)
 ProdIPDSN = DelStr(ProdIPDSN,IDLen,1)
 end
 else
 ProdIPDSN = ProdDSN
 ProdIPDSN = "'"||ProdIPDSN||"("||ProdMem||")'"
 Address TSO
 "Free fi(SYSUT1 SYSUT2 SYSPrint SYSIN)"
 "Alloc Fi(SYSUT1) Da("||TestIPDSN") SHR"
 "Alloc Fi(SYSUT2) Da("||ProdIPDSN") SHR"
 "Alloc FI(SYSPrint) DUMMY"
 "Alloc FI(SYSIN) DUMMY"
 "Call 'SYS1.LinkLib(IEBCOMPR)'"
 RtrnCD = RC
 If RtrnCD = 0 then
 Say TestMem ||": The modules are identical"
 Else
 Say TestMem ||": The modules differ!"
Return

/*------------*/
/* Read a record from TestPDS */
/*------------*/
ReadTest:
 TestCurrRec = TestCurrRec + 1;
 If TestCurrRec > NumTestRecs then
 TestMem = "99999999" /* "end of file" */
 Else DO
 TestMem = TestMems.TestCurrRec
 /* Say "I just read from TEST: " TestMem */
 End
Return

/*------------*/
/* Read a record from ProdPDS */
/*------------*/
ReadProd:
 ProdCurrRec = ProdCurrRec + 1;
 If ProdCurrRec > NumProdRecs then
 ProdMem = "99999999" /* "end of file" */
 Else Do
 ProdMem = ProdMems.ProdCurrRec
 /* Say "I just read from PROD: " ProdMem */
 End
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say "In Test, not in prod:" InTestOnly
 Say "In Prod, not in test:" InProdOnly
 Say "In Both :" InBoth
Return

Page [178]

 ConcatL - Concatenate Libraries

This command will concatenate a library to a current DDName's allocation.

If you wanted to add your Rexx Exec library to an existing SYSEXEC allocation,
you could do it two ways:

1) You could free SYSEXEC, and then reallocate all necessary libraries, including
your own. But that would make you dependent upon someone in Systems to
tell you when the normal allocation (all necessary libraries) changes.

2) You could simply add your library to the current concatenation, using this
example. This way, if the "necessary library" sequence changes, you will not be
affected. Your library will always be concatenated to that set.

/* ConCatL - Allocate a library to an exiting concatenation REXX */
Arg SearchDD LibToAdd
LibToAdd = "'"LibToAdd"'" /* Add some quotes */

Found = "NO"
Concat = "" /* Set to null in case DDName not allocated */
Dummy = OutTrap("Sysoutline.","*") /* Start capture */
"ListALC Status"
Dummy = OutTrap("OFF") /* Stop Capture */

Do I = 1 to Sysoutline.0
 /* Say "looking at " Sysoutline.I */
 If SubStr(Sysoutline.I,3,8) = SearchDD then do
 Found = "YES"
 I2 = I - 1
 DSN = SubStr(SysoutLine.I2,1,44)
 DSN = strip(DSN)
 Concat = "'" ³³ DSN ³³ "'" /* add apostrophe */
 Leave I
 End
End I

If Found = "YES" then do
 Do I3 = I + 1 to SysoutLine.0 - 1 by 2
 I4 = I3 + 1
 If SubStr(Sysoutline.I4,3,8) <> " ",
 then Leave
 If SubStr(SysoutLine.I3,1,2) <> " " then do
 DSN = Substr(Sysoutline.I3,1,45)
 DSN = strip(DSN)
 Concat = Concat ³³ " '" ³³ DSN ³³ "'"
 End
 End
End

"Allocate DDName("SearchDD") SHR Reuse ",
 "DSName("Concat LibToAdd")"

Say "ConCatL added " LibToAdd "to" SearchDD"."
Return

Page [179]

CPDSIX – Compare Two PDS Indexes

This exec will simply compare the directories (or indexes) of two PDS’s, and
report the differences. This tool can be a very helpful quality control tool.

/* CPDSIX - Compare PDS Indexes - REXX Exec */
/* Written by Dave Grund */
ARG IPPDS1 IPPDS2

Call Proc01 /* Program Initialization */
Call Proc02 /* List First PDS Members to an Array */
Call Proc03 /* List Second PDS Members to an Array */
Call Proc04 /* Compare files now */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say; Say; Say;
 Say "CPDSIX, Comparing..."
 Say "PDS1: "IPPDS1
 Say "PDS2: "IPPDS2
Return

/*------------*/
/* List Members of IPPDS1 */
/*------------*/
Proc02:
 /* Say "Reading "IPPDS1"..." */
 Dummy = OutTrap("PDS1Mems.","*")
 "LISTD " IPPDS1 "M"
 NumLines = PDS1Mems.0 - 6
 Say NumLines "Member names were found in" IPPDS1
 Dummy = OutTrap("OFF")

 NumPDS1Recs = PDS1Mems.0 + 1
 /* Clean up the array */
 Do I = 1 to 6 ; PDS1Mems.I = "" ; End
 Do I = 7 to PDS1Mems.0
 PDS1Mems.I = strip(PDS1Mems.I)
 End
Return

/*------------*/
/* List Members of IPPDS2 */
/*------------*/
Proc03:
 /* Say "Reading "IPPDS2"..." */
 Dummy = OutTrap("PDS2Mems.","*")
 "LISTD " IPPDS2 "M"
 NumLines = PDS2Mems.0 - 6
 Say NumLines "Member names were found in" IPPDS2
 Dummy = OutTrap("OFF")

Page [180]

 NumPDS2Recs = PDS2Mems.0 + 1
 /* Clean up the array */
 Do I = 1 to 6 ; PDS2Mems.I = "" ; End
 Do I = 7 to PDS2Mems.0
 PDS2Mems.I = strip(PDS2Mems.I)
 End
Return

/*------------*/
/* Compare the member names now */
/*------------*/
Proc04:
 PDS1CurrRec = 6; PDS2CurrRec = 6;
 Call ReadPDS1 /* Read first record from IPPDS1 */
 Call ReadPDS2 /* Read first record from IPPDS2 */
 InPDS1Only = 0; InPDS2Only = 0; InBoth = 0;

 Do Forever
 /* Say "Comparing " PDS1Mem "to" PDS2Mem */
 If PDS1Mem = PDS2Mem then do
 If PDS1Mem = "99999999" then Leave
 If PDS1Mem = " " then nop
 Else do
 InBoth = InBoth + 1
 End
 Call ReadPDS1 /* Read next record from IPPDS1 */
 Call ReadPDS2 /* Read next record from IPPDS2 */
 End
 Else If PDS1mem < PDS2Mem then do
 InPDS1Only = InPDS1Only + 1
 Say PDS1Mem" in PDS1 but not in PDS2"
 Call ReadPDS1 /* Read next record from IPPDS1 */
 End
 Else do
 InPDS2Only = InPDS2Only + 1
 Say PDS2Mem" in PDS2 but not in PDS1"
 Call ReadPDS2 /* Read next record from IPPDS2 */
 End
 End
Return

/*------------*/
/* Read a record from IPPDS1 */
/*------------*/
ReadPDS1:
 PDS1CurrRec = PDS1CurrRec + 1;
 If PDS1CurrRec = NumPDS1Recs then
 PDS1Mem = "99999999" /* "end of file" */
 Else DO
 PDS1Mem = PDS1Mems.PDS1CurrRec
 /* Say "I just read from PDS1: " PDS1Mem */
 End
Return

/*------------*/
/* Read a record from IPPDS2 */
/*------------*/
ReadPDS2:
 PDS2CurrRec = PDS2CurrRec + 1;

Page [181]

 If PDS2CurrRec = NumPDS2Recs then
 PDS2Mem = "99999999" /* "end of file" */
 Else Do
 PDS2Mem = PDS2Mems.PDS2CurrRec
 /* Say "I just read from PDS2: " PDS2Mem */
 End
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say "In PDS1, not in PDS2:" InPDS1Only
 Say "In PDS2, not in PDS1:" InPDS2Only
 Say "In Both :" InBoth
Return

Page [182]

 DD - Add a DD Statement

This command will add the JCL for an output disk DD statement. It is designed for
JES2, and will also generate a delete step.

/* DD - ISPF Edit Macro (REXX EXEC) */
/* Written by Dave Grund */
ADDRESS "ISREDIT" "MACRO PROCESS"
address "ISREDIT" "(XDSN)=DATASET"
address "ISREDIT" "(XMEM)=MEMBER"

/* First get the user ID from a list */
UserID = sysvar(SYSUID)
UserName = "an unknown TSO user"
If UserID = "GRUND" then UserName = "Dave Grund"
 Say "UserID =" UserID "; Name =" UserName
OurDSN = UserID||".whatever"

/* Now create the JCL statements */
J01 = "//*"
J021 = "//*-----------------------------------"
J022 = "--------------------------------*"
J03 = "//* STEPNN1 - IEFBR14 - DELETE OUTPUT DATASETS"
J04 = "//STEPNN1 EXEC PGM=IEFBR14"
J05 = "//DELDS DD DSN="||OurDSN||","
J06 = "// DISP=(MOD,DELETE),UNIT=SYSDA,SPACE=(TRK,(0))"
J07 = "//*"
J08 = "//* Output file description"
J09 = "//filenam DD DSN="||OurDSN||","
J10 = "// DISP=(NEW,CATLG,DELETE),"
J11 = "// UNIT=SYSDA,SPACE=(080,(123,123),RLSE),AVGREC=U,"
J13 = "// DCB=(DSORG=PS,RECFM=FB,LRECL=080,BLKSIZE=0)"

/* Now insert them into the currently-edited member */
address "ISREDIT" "LINE_AFTER 0 =" "'"J01"'"
address "ISREDIT" "LINE_AFTER 1 =" "'"J021""J022"'"
address "ISREDIT" "LINE_AFTER 2 =" "'"J03"'"
address "ISREDIT" "LINE_AFTER 3 =" "'"J021""J022"'"
address "ISREDIT" "LINE_AFTER 4 =" "'"J04"'"
address "ISREDIT" "LINE_AFTER 5 =" "'"J05"'"
address "ISREDIT" "LINE_AFTER 6 =" "'"J06"'"
address "ISREDIT" "LINE_AFTER 7 =" "'"J07"'"
address "ISREDIT" "LINE_AFTER 8 =" "'"J08"'"
address "ISREDIT" "LINE_AFTER 9 =" "'"J09"'"
address "ISREDIT" "LINE_AFTER 10 =" "'"J10"'"
address "ISREDIT" "LINE_AFTER 11 =" "'"J11"'"
address "ISREDIT" "LINE_AFTER 12 =" "'"J13"'"

/* NOW PUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */
ADDRESS "ISREDIT" "LABEL 2 = .LSTART "
ADDRESS "ISREDIT" "LABEL 3 = .LEND "
ADDRESS "ISREDIT" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"
ADDRESS "ISREDIT" "RESET"

ADDRESS "ISREDIT" "Cursor = 1 0"

address "ISREDIT" "LINE_AFTER 0 = NoteLine",
 "'--- This is the delete step ---------------------------'"

Page [183]

address "ISREDIT" "LINE_AFTER 7 = NoteLine",
 "'--- The output DD specification follows ---------------'"
address "ISREDIT" "LINE_AFTER 13 = NoteLine",
 "'---'"

address "ISREDIT" "LINE_AFTER 13 = NoteLine",
 "'--- Constructed especially for " || UserName "'"

Page [184]

DELDUPS - Delete Duplicate Records

/* DelDups - Delete Duplicate Lines REXX Exec */
/* Written by Dave Grund */
ADDRESS ISREDIT
'MACRO (begcol endcol)'
If Begcol = '?' then do
 zedsmsg = 'DelDups begcol,endcol'
 zedlmsg = 'Command syntax: DelDup beginning col, ending col'
 signal quitme
end
numcheck = DATATYPE(begcol,N) /* Determine if any parms have */
If NumCheck /= 1 then BegCol = 1 /* been passed. */
numcheck = DATATYPE(endcol,N)
If NumCheck /= 1 then 'ISREDIT (endcol) = LRECL'

'ISREDIT (currline) = LINENUM .ZFIRST' /* save starting record # */
'ISREDIT (lastline) = LINENUM .ZLAST' /* save ending record # */
'ISREDIT (cl,cc) = CURSOR' /* save cursor position */
DupCnt = 0
Do currline = 1 to lastline - 1
 If CurrLine > (LastLine - 1) then leave
 'ISREDIT (line1) = LINE' currline
 line1 = substr(line1,begcol,(endcol - begcol) + 1)
 nextline = currline + 1
 'ISREDIT (line2) = LINE' nextline /* get next record */
 line2 = substr(line2,begcol,(endcol - begcol) + 1)
 If line1 == line2 then do
 DupCnt = DupCnt + 1
 "ISREDIT LABEL " currline " = .A"
 "ISREDIT LABEL " nextline " = .B"
 "ISREDIT Delete " nextline
 currline = currline - 1 ; lastline = lastline - 1
 end
end
zedsmsg = DupCnt 'DUPS Deleted'
zedlmsg = DupCnt 'duplicate lines were deleted'
Quitme:
ADDRESS ISPEXEC
'SETMSG MSG(ISRZ000)'
EXIT 0

Page [185]

DURATION - Time an EXEC

This Rexx exec can be modified to time the processing of a command. It's a good
idea to do this is some of the longer-running execs, or to brag about how fast your exec
can accomplish something!

/* Duration - Rexx EXEC */
/* Written by Dave Grund */
/* This command will test the code to perform a calculation
 of command duration */
STime = Time(E) /* Start time */
Say "I am waiting for you to hit enter!"
Pull Answer
ETime = Time(E) /* End Time */
Duration = ETime - STime
Say "This command took" Duration "seconds!"

Page [186]

FindMem - Find a Member in a Concatenation

This Rexx exec will search a concatenated set of libraries for a specific member
name. This is useful for when you want to know exactly which library an ISPF panel or a
Rexx Exec is being executed from.

This command can also be executed in batch to look for copybooks or load
modules in a concatenation.

/* FindMem - Find a Member in a Concatenation REXX */

ARG OurDD OurMem

Call Proc01 /* Initialization */
Call Proc02 /* ListA to an array */
Call Proc03 /* Adjust the array */
Call Proc04 /* Remove 'KEEP' lines */
/* Call Proc05 */ /* Write the array to a dataset and view it */
Call Proc06 /* Isolate the DD */
Call Proc10 /* Now search each PDS */
Exit

/*-----------*/
/* Proc01 - Initialization */
/*-----------*/
Proc01:
 If OurDD = "" ³ OurMem = "" then do
 Say "Command syntax: FindMem DDName MemName"
 Exit(16)
 End
Return

/*-----------*/
/* Proc02 - ListA to an array */
/*-----------*/
Proc02:
 Dummy = OutTrap("output_line.","*")
 "LISTA SY ST"
 NumLines = OutPut_Line.0
 /* Say NumLines "lines were created" */
 Dummy = OutTrap("OFF")
Return

/*-----------*/
/* Proc03 - Adjust the array */
/*-----------*/
Proc03:
 /* Move the line with the DDNAME above the first datasetname
 that it is concatenated to. It is currently below. */
 Do I = 1 to NumLines
 Col1_2 = SubStr(OutPut_Line.I,1,2)
 Col3 = SubStr(OutPut_Line.I,3,1)
 Col12_15 = SubStr(OutPut_Line.I,12,4)
 If Col1_2 = ' ' & ,

Page [187]

 Col3 /= ' ' & ,
 Col12_15 = 'KEEP' then do
 J = I - 1
 SaveLine = OutPut_Line.I
 Output_Line.I = OutPut_Line.J
 Output_Line.J = SaveLine
 end
 end
Return

/*-----------*/
/* Proc04 - Remove all lines that say only "KEEP" */
/*-----------*/
Proc04:
 J = 0 /* Output array counter */
 Do I = 1 to NumLines
 ThisLine = strip(Output_Line.I)
 If (left(ThisLine,4) = 'KEEP') ³ ,
 (left(ThisLine,8) = 'TERMFILE') then nop=nop
 Else do
 J = J + 1; NewArray.J = OutPut_Line.I
 End
 End
 NewArray.0 = J
Return

/*-----------*/
/* Proc05 - Write the Array to a dataset and view it */
/*-----------*/
Proc05:
 "Delete la.list"
 "Allocate DD(LAList) DA(LA.List) new space(1 1) tracks",
 "LRECL(80) Block(5600) recfm(f b) RETPD(0)"

 "ExecIO" NewArray.0 "DiskW LAList (STEM NewArray. FINIS"
 "Free DDNAME(LaList) DA(La.List)"

 ADDRESS "ISPEXEC" "View Dataset(La.List)"
Return

/*-----------*/
/* Proc06 - Isolate the DD */
/*-----------*/
Proc06:
 J = 0 /* DSNArray counter */
 DDName = ''
 Do I = 1 to NewArray.0
 If left(NewArray.I,2) = ' ' then
 DDName = left(strip(NewArray.I),8)
 else do
 ThisRec = DDName³³strip(NewArray.I)
 J = J + 1; DSNArray.J = ThisRec
 end
 End
 DSNArray.0 = J

 /* Do I = 1 to DSNArray.0
 Say DSNArray.I
 End */
Return

Page [188]

/*-----------*/
/* Proc10 - Search each DSN for our member name */
/*-----------*/
Proc10:
 DDFound = 0 ; MemFnd = 0
 Do I = 1 to DSNArray.0
 If left(DSNArray.I,8) = OurDD then do
 DDFound = DDFound + 1
 DSN = strip(substr(DSNArray.i,9,63))
 /* Say "Looking through DSN" DSN */
 Call Proc101 /* Check this DSN */
 End
 End
 Say "All together, I found "DDFound" DSN's allocated to DDName "OurDD
 TWord = 'times'; If MemFnd = 1 then TWord = 'time'
 Say "I found member "OurMem MemFnd TWord"."
Return

/*-----------*/
/* Proc101 - Search this DSN for our member name */
/*-----------*/
Proc101:
 /* First make sure this dataset is a PDS */
 RC = ListDSI("'"DSN"'" Directory)
 If RC > 0 then do
 Say 'Error processing 'DSN
 Say SYSMSGLVL1; Say SYSMSGLVL2 ; Say
 Return
 End
 If SYSDSORG = "PO" then do
 Dummy = OutTrap("PDSLines.","*")
 "LISTD '"DSN"' M"
 NumLines = PDSLines.0
 Dummy = OutTrap("OFF")
 Do K = 6 to PDSLines.0
 /* Say "The line is: "PDSLines.K */
 If Pos(OurMem,PDSLines.K) > 0 then do
 Say "I found member "OurMem" in "DSN
 MemFnd = MemFnd + 1
 End
 End
 End
 Else
 Say "Dataset "DSN" is not a PDS."
Return

Page [189]

FixJCL - Fix Job Control

FixJCL is a Rexx exec that will read a set of Mainframe JCL, and make certain
format changes.

Granted that these format changes are to personal style and specifications: it puts
the datasetname on the first line, the disposition parameters on the second line (unless they
are short), the space parameters together on the next line, the DCB parameters on the
next, and anything else on the last.

The beauty of this exec is that it parses the JCL, and isolates just about every
"common" JCL field, so if you didn't want to create finished, or "fixed" JCL, you could do
whatever processing you wanted. Additionally, the code is all there, so you could make
any desired enhancements.

The exec first reads the JCL into an array, parses and identifies it, and then creates
a file of fields. The code to catalogue this particular file has been commented out, but for
testing or development, you would want to open this code back up.

That array is then read, and the final JCL file is created.

Please note that the objective of this exec is twofold: to present a usable tool, and
to provide the code to enhance the tool. There is a lot of room for improvement in this
particular tool. It isn't meant to be a finished and shiny product. It is meant to accomplish
something very useful, and allow the user to make any desired improvements or
enhancements to something that has a good, solid base.

The code, in its entirety, follows:
/* FixJCL - Create a Fixed File of JCL - REXX Exec */

ARG IPDSN
Call Proc01 /* Program initialization */
Call Proc10 /* Parse the JCL */
Call Proc30 /* Write the control card array */
Call Proc40 /* Write the fixed JCL */

Call ProcEOJ /* EOJ Processing */
Exit

/*------------
Output record layout: */
Cols 1-3: Record Type
Cols 4-72: text
1-- JOBCARD
101 Jobname
102 Accounting Info
103 Routing Info
104 MSGLEVEL
105 MSGCLASS
106 CLASS

Page [190]

107 NOTIFY
199 Other info
4-- STEP/EXEC
401 Stepname
402 PGM= or procname
403 PARM
404 COND
405 REGION
5-- DD Statement
501 DDName
502 SYSOUT
503 'DUMMY'
504 DSN
505 DISP
506 UNIT
507 SPACE
508 AVGREC
509 DCB first positional
510 DCB DSORG
511 DCB RECFM
512 DCB LRECL
513 DCB BLKSIZE
514 LABEL
515 COPIES
516 DEST
517 HOLD
518 TRTCH
519 OUTPUT
520 VOL=SER
521 FREE
601 Data
701 COMMENT
801 OUTPUT
901 Unknown
--------------*/

/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 "DelStack"
 If IPDSN = "" then do
 Say "Command syntax: FixJCL DSN"
 Exit
 end

 Say "FixJCL Working on " IPDSN ": ",
 sysvar(SYSUID) Date(U) Time() "..."

 Call Proc011 /* Read the JCL into an array */
 ExpectingContinuation = "N"

 OpCtr = 0
 OData.0 = OpCtr /* Create the output array */
 Spaces = " "
Return

/*------------*/
/* Read the JCL into an array */
/*------------*/

Page [191]

Proc011:
 "Alloc DDN(InFile) DSN("IPDSN") SHR"
 If RC <> 0 then do
 Say "I could not allocate "IPDSN". Sorry."
 Exit
 end
 "ExecIO * DiskR InFile (Stem JCL. Finis"
 "Free FI(InFile)"
 Say "I read "JCL.0" lines of JCL into the array."
Return

/*------------*/
/* Parse the JCL */
/*------------*/
/* This routine will parse the JCL, and create an array of
 control cards representing the JCL values */
Proc10:
 Do I = 1 to JCL.0
 Record = strip(left(JCL.I,72)) /* Look at only cols 1-72 */
 Call Proc20 /* Parse/identify the stmt */
 If RecID = "J" then Call Proc230 /* Job card */
 If RecID = "E" then Call Proc240 /* Exec card */
 If RecID = "D" then Call Proc250 /* DD card */
 If RecID = "A" then Call Proc260 /* data card */
 If RecID = "C" then Call Proc270 /* Comment card */
 If RecID = "O" then Call Proc280 /* Output Card */
 If RecID = "U" then Call Proc290 /* Unknown card */
 End
Return

/*------------*/
/* Parse and identify the JCL Statement */
/*------------*/
Proc20:
 Parse Var Record Piece1 Piece2 Piece3
 If ExpectingContinuation = "Y" then Return
 RecID = "U" /* Unknown */
 If left(Record,1) /= "/" then RecID = "A" /* Data */
 If left(Record,3) = "//*" then RecID = "C" /* Comment */
 Else
 If left(Record,2) = "//" then do
 If strip(Piece2) = "JOB" then RecID = "J" /* Job card */
 If strip(Piece2) = "EXEC" then RecID = "E" /* Execute card */
 If strip(Piece2) = "DD" then RecID = "D" /* DD card */
 If strip(Piece2) = "OUTPUT" then RecID = "O" /* Output card */
 End
 /* Say "The following record:"
 Say Record
 Say "has been identified as "RecID */
Return

/*------------*/
/* Process Job Card */
/*------------*/
Proc230:
 /* If this is the first card of a set, then the variable
 ExpectingContinuation will be "N". For all other cards, it
 will be 'Y'. */
 If ExpectingContinuation = "N" then JobCard = Record
 Else Jobcard = Jobcard||Piece2

Page [192]

 If right(Record,1) = ',' then ExpectingContinuation = "Y"
 Else do /* We have read the final job card */
 ExpectingContinuation = "N"
 Call Proc2301 /* Parse the job statement */
 Call Proc2302 /* Write them to the array */
 End
Return

/*------------*/
/* Parse the Job Statement */
/*------------*/
Proc2301:
 Parse Var Jobcard Piece1 Piece2 Piece3
 V101 = DelStr(Piece1,1,2) /* Job name */

 Parse var Piece3 V102 "," Piece3 /* Job accounting info */

 If left(Piece3,1) = "'" then Piece3 = DelStr(Piece3,1,1)
 Parse var Piece3 V103 "'" Piece3 /* Routing info */

 V104 = " " ; V105 = "" ; V106 = ""; V107 = "" ; V199 = ""
 Parse var Piece3 PJ1 "," PJ2 "," PJ3 "," PJ4 "," ,
 PJ5 "," PJ6 "," PJ7 "," PJ8
 Do J = 1 to 8
 ThisArg = Value(PJ||J)
 If left(ThisArg,9) = "MSGLEVEL=" then do
 V104 = right(ThisArg,1)
 ThisPos = Index(Piece3,ThisArg) /* Del */
 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)
 End
 If left(ThisArg,9) = "MSGCLASS=" then do
 V105 = right(ThisArg,1)
 ThisPos = Index(Piece3,ThisArg) /* Del */
 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)
 End
 If left(ThisArg,6) = "CLASS=" then do
 V106 = right(ThisArg,1)
 ThisPos = Index(Piece3,ThisArg) /* Del */
 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)
 End
 If left(ThisArg,7) = "NOTIFY=" then do
 V107 = DelStr(ThisArg,1,7)
 ThisPos = Index(Piece3,ThisArg) /* Del */
 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)
 End
 End
 V199 = V199||Piece3 /* Whatever is left */
 If left(V199,1) = "," then V199 = DelStr(V199,1,1)
 If right(V199,1) = "," then V199 = DelStr(V199,length(V199),1)
Return

/*------------*/
/* Write the job information to the array */
/*------------*/
Proc2302:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "101"||V101
 OpCtr = OpCtr + 1 ; OData.OpCtr = "102"||V102
 OpCtr = OpCtr + 1 ; OData.OpCtr = "103"||V103
 OpCtr = OpCtr + 1 ; OData.OpCtr = "104"||V104

Page [193]

 OpCtr = OpCtr + 1 ; OData.OpCtr = "105"||V105
 OpCtr = OpCtr + 1 ; OData.OpCtr = "106"||V106
 OpCtr = OpCtr + 1 ; OData.OpCtr = "107"||V107
 OpCtr = OpCtr + 1 ; OData.OpCtr = "199"||V199
Return

/*------------*/
/* Execute Card */
/*------------*/
Proc240:
 /* If this is the first card of a set, then the variable
 ExpectingContinuation will be "N". For all other cards, it
 will be 'Y'. */
 If ExpectingContinuation = "N" then ExecCard = Record
 Else ExecCard = ExecCard||Piece2

 If right(Record,1) = ',' then ExpectingContinuation = "Y"
 Else do /* We have read the final card */
 ExpectingContinuation = "N"
 /* Say "The entire execute statement follows" */
 /* Say ExecCard */
 Call Proc2401 /* Parse the exec statement */
 Call Proc2402 /* Write them to the array */
 End
Return

/*------------*/
/* Parse the Exec Statement */
/*------------*/
Proc2401:
 /* With the job statement, we parse the whole thing at once.
 We cannot do that with the Exec, because of operands that begin in
 a left parenthesis, like the COND. Therefore, we have to
 "break off" a piece at a time. */

 V402 = " " ; V403 = ""; V404 = "" ; V405 = "";
 V499 = "" /* Init vars */

 Parse Var ExecCard Piece1 Piece2 Piece3
 V401 = DelStr(Piece1,1,2) /* Step name */
 Piece3 = strip(Piece3)

 Do 10 /* There shouldn't be more than this */
 If left(Piece3,1) = "," then Piece3 = DelStr(Piece3,1,1)
 If left(Piece3,4) = "PGM=" then do
 Parse Var Piece3 V402 "," Piece3
 V402 = right(V402,length(V402)-4)
 End
 If left(Piece3,6) = "PARM='" then do
 Piece3 = DelStr(Piece3,1,6)
 Parse Var Piece3 V403 "'" Piece3
 End
 If left(Piece3,6) = "PARM=(" then do
 Piece3 = DelStr(Piece3,1,6)
 Parse Var Piece3 V403 ")" Piece3
 End
 If left(Piece3,5) = "PARM=" then do
 Parse Var Piece3 V403 "," Piece3
 V403 = right(V403,length(V403)-5)
 End

Page [194]

 If left(Piece3,6) = "COND=(" then do
 Piece3 = delstr(Piece3,1,6)
 Parse Var Piece3 V404 ")" Piece3
 End
 If left(Piece3,7) = "REGION=" then do
 Parse Var Piece3 V405 "," Piece3
 V405 = right(V405,length(V405)-7)
 End
 End
 V499 = V499||Piece3 /* Whatever is left */
Return

/*------------*/
/* Write the job information to the array */
/*------------*/
Proc2402:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "401"||V401
 OpCtr = OpCtr + 1 ; OData.OpCtr = "402"||V402
 OpCtr = OpCtr + 1 ; OData.OpCtr = "403"||V403
 OpCtr = OpCtr + 1 ; OData.OpCtr = "404"||V404
 OpCtr = OpCtr + 1 ; OData.OpCtr = "405"||V405
 OpCtr = OpCtr + 1 ; OData.OpCtr = "499"||V499
Return

/*------------*/
/* DD Card */
/*------------*/
Proc250:
 /* If this is the first card of a set, then the variable
 ExpectingContinuation will be "N". For all other cards, it
 will be 'Y'. */
 If ExpectingContinuation = "N" then DDCard = Record
 Else DDCard = DDCard||Piece2

 If right(Record,1) = ',' then ExpectingContinuation = "Y"
 Else do /* We have read the final card */
 ExpectingContinuation = "N"
 /* Say "The entire DD statement follows" */
 /* Say DDCard */
 Call Proc2501 /* Parse the exec statement */
 Call Proc2502 /* Write them to the array */
 End
Return

/*------------*/
/* Parse the DD Statement */
/*------------*/
Proc2501:
 /* With the job statement, we parse the whole thing at once.
 We cannot do that with the DD, because of operands that begin in
 a left parenthesis. Therefore, we have to "break off" a piece
 at a time. */

 V501= ""; V502= ""; V503= ""; V504= ""; V505= "";
 V506= ""; V507= ""; V508= ""; V509= ""; V510= "";
 V511= ""; V512= ""; V513= ""; V514= ""; V515= "";
 V516= ""; V517= ""; V518= ""; V519= ""; V520= "";
 V521= "";
 DCBStmt= "";
 V599= "" /* Init vars */

Page [195]

 Parse Var DDCard Piece1 Piece2 Piece3
 V501 = DelStr(Piece1,1,2) /* DD Name */
 Piece3 = strip(Piece3)

 Do 20 /* There shouldn't be more than this */
 If left(Piece3,1) = "," then Piece3 = DelStr(Piece3,1,1)

 If left(Piece3,8) = "SYSOUT=(" then do
 Piece3 = DelStr(Piece3,1,8)
 Parse Var Piece3 V502 ")" Piece3
 End
 If left(Piece3,7) = "SYSOUT=" then do
 Parse Var Piece3 V502 "," Piece3
 V502 = right(V502,length(V502)-7)
 End
 If left(Piece3,5) = "DUMMY" then do
 Parse Var Piece3 V503 "," Piece3
 End
 If left(Piece3,4) = "DSN=" then do
 Parse Var Piece3 V504 "," Piece3
 V504 = right(V504,length(V504)-4)
 End
 If left(Piece3,7) = "DSNAME=" then do
 Parse Var Piece3 V504 "," Piece3
 V504 = right(V504,length(V504)-7)
 End
 If left(Piece3,6) = "DISP=(" then do
 Piece3 = DelStr(Piece3,1,6)
 Parse Var Piece3 V505 ")" Piece3
 End
 If left(Piece3,5) = "DISP=" then do
 Parse Var Piece3 V505 "," Piece3
 V505 = right(V505,length(V505)-5)
 End
 If left(Piece3,5) = "UNIT=" then do
 Parse Var Piece3 V506 "," Piece3
 V506 = right(V506,length(V506)-5)
 End
 If left(Piece3,6) = "SPACE=" then do
 Piece3 = DelStr(Piece3,1,6) /* Delete the string */
 Call Proc810; V507 = Result /* Call nest isolator */
 End
 If left(Piece3,5) = "DCB=(" then do
 Piece3 = DelStr(Piece3,1,5)
 Parse Var Piece3 DCBStmt ")" Piece3
 Call Proc2509 /* Parse the DCB statement */
 End
 If left(Piece3,4) = "DCB=" then do
 Parse Var Piece3 DCBStmt "," Piece3
 DCBStmt = right(DCBStmt,length(DCBStmt)-4)
 Call Proc2509 /* Parse the DCB statement */
 End
 If left(Piece3,6) = "LABEL=" then do
 Parse Var Piece3 V514 "," Piece3
 V514 = right(V514,length(V514)-6)
 End
 If left(Piece3,7) = "COPIES=" then do
 Piece3 = DelStr(Piece3,1,7) /* Delete the string */
 Call Proc810; V515 = Result /* Call nest isolator */

Page [196]

 End
 If left(Piece3,5) = "DEST=" then do
 Parse Var Piece3 V516 "," Piece3
 V516 = right(V516,length(V516)-5)
 End
 If left(Piece3,5) = "HOLD=" then do
 Parse Var Piece3 V517 "," Piece3
 V517 = right(V517,length(V517)-5)
 End
 If left(Piece3,6) = "TRTCH=" then do
 Parse Var Piece3 V518 "," Piece3
 V518 = right(V518,length(V518)-6)
 End
 If left(Piece3,8) = "OUTPUT=(" then do
 Piece3 = DelStr(Piece3,1,8)
 Parse Var Piece3 V519 ")" Piece3
 End
 If left(Piece3,7) = "OUTPUT=" then do
 Parse Var Piece3 V519 "," Piece3
 V519 = right(V519,length(V519)-7)
 End
 If left(Piece3,8) = "VOL=SER=" then do
 Parse Var Piece3 V520 "," Piece3
 V520 = right(V520,length(V520)-8)
 End
 If left(Piece3,5) = "FREE=" then do
 Parse Var Piece3 V521 "," Piece3
 V521 = right(V521,length(V521)-5)
 End
 End
 V599 = V599||Piece3 /* Whatever is left */

 /* Impose my personal styles upon the values here */
 If (left(V505,6) = ",CATLG") | ,
 (left(V505,5) = ",PASS") then V505 = "NEW"||V505
Return

/*------------*/
/* Write the job information to the array */
/*------------*/
Proc2502:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "501"||V501
 OpCtr = OpCtr + 1 ; OData.OpCtr = "502"||V502
 OpCtr = OpCtr + 1 ; OData.OpCtr = "503"||V503
 OpCtr = OpCtr + 1 ; OData.OpCtr = "504"||V504
 OpCtr = OpCtr + 1 ; OData.OpCtr = "505"||V505
 OpCtr = OpCtr + 1 ; OData.OpCtr = "506"||V506
 OpCtr = OpCtr + 1 ; OData.OpCtr = "507"||V507
 OpCtr = OpCtr + 1 ; OData.OpCtr = "508"||V508
 OpCtr = OpCtr + 1 ; OData.OpCtr = "509"||V509
 OpCtr = OpCtr + 1 ; OData.OpCtr = "510"||V510
 OpCtr = OpCtr + 1 ; OData.OpCtr = "511"||V511
 OpCtr = OpCtr + 1 ; OData.OpCtr = "512"||V512
 OpCtr = OpCtr + 1 ; OData.OpCtr = "513"||V513
 OpCtr = OpCtr + 1 ; OData.OpCtr = "514"||V514
 OpCtr = OpCtr + 1 ; OData.OpCtr = "515"||V515
 OpCtr = OpCtr + 1 ; OData.OpCtr = "516"||V516
 OpCtr = OpCtr + 1 ; OData.OpCtr = "517"||V517
 OpCtr = OpCtr + 1 ; OData.OpCtr = "518"||V518
 OpCtr = OpCtr + 1 ; OData.OpCtr = "519"||V519

Page [197]

 OpCtr = OpCtr + 1 ; OData.OpCtr = "520"||V520
 OpCtr = OpCtr + 1 ; OData.OpCtr = "521"||V521
 OpCtr = OpCtr + 1 ; OData.OpCtr = "599"||V599
Return

/*------------*/
/* Parse the DCB Statement */
/*------------*/
Proc2509:
 Parse Var DCBStmt DCBTemp "," DCBStmt
 If Pos('=',DCBTemp) = 0 then V509 = DCBTemp /* Model DSCB */
 Else DCBStmt = DCBTemp||","||DCBStmt

 Do 20 /* This should be more than enough */
 If left(DCBStmt,6) = "DSORG=" then do
 Parse Var DCBStmt V510 "," DCBStmt
 V510 = right(V510,length(V510)-6)
 End
 If left(DCBStmt,6) = "RECFM=" then do
 Parse Var DCBStmt V511 "," DCBStmt
 V511 = right(V511,length(V511)-6)
 End
 If left(DCBStmt,6) = "LRECL=" then do
 Parse Var DCBStmt V512 "," DCBStmt
 V512 = right(V512,length(V512)-6)
 End
 If left(DCBStmt,8) = "BLKSIZE=" then do
 Parse Var DCBStmt V513 "," DCBStmt
 V513 = right(V513,length(V513)-8)
 End
 End
Return

/*------------*/
/* Data card */
/*------------*/
Proc260:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "601"||JCL.I
Return

/*------------*/
/* Comment Card */
/*------------*/
Proc270:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "701"||Record
Return

/*------------*/
/* Output Card */
/*------------*/
Proc280:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "801"||Record
Return

/*------------*/
/* Unknown card */
/*------------*/
Proc290:
 OpCtr = OpCtr + 1 ; OData.OpCtr = "901"||Record
Return

Page [198]

/*------------*/
/* Write the control card file */
/*------------*/
Proc30:
 OData.0 = OpCtr

 ViewData = false
 If ViewData = true then do
 OPDSN = FixJCL.Data
 "Delete "OPDSN
 "Allocate DD(OutFile) DA("OPDSN") new space(1 1) tracks",
 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

 "ExecIO" OData.0 "DiskW OutFile (STEM OData. FINIS"
 "Free DDNAME(OutFile)"
 Say OpCtr "Records written to "OPDSN
 ADDRESS "ISPEXEC" "View Dataset("OPDSN")"
 end
Return

/*------------*/
/* Write the fixed JCL */
/*------------*/
Proc40:
 Call Proc401 /* Create the Fixed JCL array */
 Call Proc402 /* Write the array to disk */
Return

/*------------*/
/* Create the Fixed JCL Array */
/*------------*/
Proc401:
 OJCLCtr = 0
 Do I = 1 to OData.0
 /* Say "Proc401; i/p=" OData.I */
 RecClass = left(OData.I,1)
 RecID = left(OData.I,3)
 Text = DelStr(OData.I,1,3)
 If (RecID = 401) | (RecID = 501) | (RecID = 601) | ,
 (RecID = 701) | (RecID = 801) | (RecID = 901) then do
 /* Write the previous recordset */
 If LastClass = "1" then Call Proc40121 /* Job card */
 If LastClass = "4" then Call Proc40124 /* Step/Exec */
 If LastClass = "5" then Call Proc40125 /* DD Statement */
 End
 LastClass = RecClass
 If Text /= "" then do
 /* Set values */
 If RecClass = "1" then Call Proc40111 /* Job card */
 If RecClass = "4" then Call Proc40114 /* Step/Exec */
 If RecClass = "5" then Call Proc40115 /* DD Statement */
 End
 If RecClass = "6" | , /* Data: write ALL records */
 RecClass = "7" | , /* Comment: write ALL records */
 RecClass = "8" | , /* Output: write ALL records */
 RecClass = "9" then do /* Unknown: write ALL records */
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = Text
 Iterate
 End

Page [199]

 End

 /* Write the final class; it's sitting in core */
 LastClass = left(OData.OJCLCTR,1)
 If LastClass = "1" then Call Proc40121 /* Job card */
 If LastClass = "4" then Call Proc40124 /* Step/Exec */
 If LastClass = "5" then Call Proc40125 /* DD Statement */
 If LastClass = "7" then Call Proc40127 /* Comment */
Return

/*------------*/
/* Clear Values */
/*------------*/
ClearValues:
 V101=" "; V102=" "; V103=" "; V104=" "; V105=" "
 V106=" "; V107=" "; V199=" ";

 V401=" "; V402=" "; V403=" "; V404=" "; V405=" "
 V499=" ";

 V501=""; V502=""; V503=""; V504=""; V505=""
 V506=""; V507=""; V508=""; V509=""; V510=""
 V511=""; V512=""; V513=""; V514=""; V515=""
 V516=""; V517=""; V518=""; V519=""; V520=""
 V521="";
 V599="";
 SOLine = ""; USLine = ""; DCBTemp = "" ; DDLine4 = ""
Return

/*------------*/
/* Process Job card */
/*------------*/
Proc40111:
 If RecID = "101" then V101 = Text
 If RecID = "102" then V102 = Text
 If RecID = "103" then V103 = Text
 If RecID = "104" then V104 = "MSGLEVEL="||Text
 If RecID = "105" then V105 = "MSGCLASS="||Text
 If RecID = "106" then V106 = "CLASS="||Text
 If RecID = "107" then V107 = "NOTIFY="||Text
 If RecID = "199" then V199 = Text
Return

/*------------*/
/* Process Step/Exec card */
/*------------*/
Proc40114:
 If RecID = "401" then V401 = Text
 If RecID = "402" then V402 = "PGM="||Text
 If RecID = "403" then V403 = "PARM='"Text"'"
 If RecID = "404" then V404 = "COND=("Text")"
 If RecID = "405" then V405 = "REGION="||Text
 If RecID = "499" then V499 = Text
Return

/*------------*/
/* Process DD Card */
/*------------*/
Proc40115:
 If RecID = "501" then V501 = Text

Page [200]

 /* Construct the SYSOUT line */
 If RecID = "502" then do
 If Text = "," then Text = "(,)"
 V502 = "SYSOUT="Text
 SOLine = SOLine||V502
 End
 If RecID = "519" then do
 If Pos(",",Text) > 0 then Text = "("Text")"
 SOLine = SOLine",OUTPUT="Text
 End
 If RecID = "521" then do
 If Pos(",",Text) > 0 then Text = "("Text")"
 SOLine = SOLine",FREE="Text
 End

 If RecID = "503" then V503 = Text
 If RecID = "504" then V504 = "DSN="Text

 If RecID = "505" then do
 If Pos(',',Text) = 0 then V505 = "DISP="Text
 else V505 = "DISP=("Text")"
 End

 /* Construct the UNIT and SPACE line */
 If RecID = "506" then USLine = USLine"UNIT="Text
 If RecID = "507" then USLine = USLine",SPACE="Text
 If RecID = "508" then USLine = USLine",AVGREC="Text
 If RecID = "520" then USLine = USLine",VOL=SER="Text
 If left(USLine,1) = "," then USLine = DelStr(USLine,1,1)

 If RecID = "509" then DCBTemp = DCBTemp||Text
 If RecID = "510" then DCBTemp = DCBTemp",DSORG="Text
 If RecID = "511" then DCBTemp = DCBTemp",RECFM="Text
 If RecID = "512" then DCBTemp = DCBTemp",LRECL="Text
 If RecID = "513" then DCBTemp = DCBTemp",BLKSIZE="Text
 If left(DCBTemp,1) = "," then DCBTemp = DelStr(DCBTemp,1,1)

 /* Construct the "DD Line 4" */
 If RecID = "514" then DDLine4 = DDLine4"LABEL="Text
 If RecID = "515" then DDLine4 = DDLine4",COPIES="Text
 If RecID = "516" then DDLine4 = DDLine4",DEST="Text
 If RecID = "517" then DDLine4 = DDLine4",HOLD="Text
 If RecID = "518" then DDLine4 = DDLine4",TRTCH="Text
 If left(DDLine4,1) = "," then DDLine4 = DelStr(DDLine4,1,1)

 If RecID = "599" then V599 = Text
Return

/*------------*/
/* Write the Job card */
/*------------*/
Proc40121:
 V101 = left(V101||spaces,8)
 JC1 = "//"V101" JOB "||V102",'"V103"',"
 JC2 = "// "V104","V105","V106","V107
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1
 If V199 = "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2
 End

Page [201]

 Else do
 JC2 = JC2||","
 JC3 = "// "V199
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC3
 End
 Call ClearValues;
Return

/*------------*/
/* Write the Step/Exec card */
/*------------*/
Proc40124:
 V401 = left(V401||spaces,8)
 JC1 = "//"V401" EXEC "||V402
 If V404 /= "" then JC1 = JC1","V404
 If V405 /= "" then JC1 = JC1","V405
 If V403 = "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1
 end
 else do /* There IS a parm field */
 if (length(JC1) + 1 + length(V403)) < 72 then do /* same line */
 JC1 = JC1","V403
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1
 end
 else do
 JC1 = JC1||","
 JC2 = "// "V403
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2
 End
 End
 Call ClearValues;
Return

/*------------*/
/* Write the DD Card */
/*------------*/
Proc40125:
 C1=""; C2=""; C3=""; C4=""; C5=""; C6=""
 V501 = left(V501||spaces,8) /* DDName */
 C1 = strip("//"V501" DD "SOLine||V503||V504)

 /* There is almost NEVER a good reason to say DISP=(OLD,DELETE).
 At UMB, OLD,DELETE is used too frequently. Therefore,
 impose my personal preferences and replace those. */
 If left(V505,9) = "DISP=(OLD" then
 V505 = "DISP=SHR"||right(V505,length(V505)-9)
 If left(V505,8) = "DISP=OLD" then
 V505 = "DISP=SHR"||right(V505,length(V505)-8)
 If left(V505,15) = "DISP=SHR,DELETE" then
 V505 = "DISP=SHR"

 If Pos(',',DCBTemp) > 0 then DCBTemp = "DCB=("DCBTemp")"

 If ((length(C1) + 1 + length(V505)) < 72) & ,
 (V505 = "DISP=SHR") then do
 C1 = C1","V505
 C2 = strip("// "USLine)
 C3 = strip("// "DCBTemp)

Page [202]

 C4 = strip("// "DDLine4)
 C5 = strip("// "V599)
 end
 else do
 C2 = strip("// "V505)
 C3 = strip("// "USLine)
 C4 = strip("// "DCBTemp)
 C5 = strip("// "DDLine4)
 C6 = strip("// "V599)
 end

 Do 4
 If length(C2) < 3 then do /* The 2nd card is completely blank */
 C2 = C3; C3 = C4; C4 = C5; C5 = C6; C6 = ""
 end
 end

 /* See if we can (should) combine any JCL lines */
 If length(strip(C1)) < 16 then do
 C2 = DelStr(C2,1,11)
 C1 = C1" "C2
 C2 = C3; C3 = C4; C4 = C5; C5 = C6; C6 = ""
 End

 /* See which lines need continuation commas */
 If length(C2) > 2 then C1 = C1||","
 else C2 = ""
 If length(C3) > 2 then C2 = C2||","
 else C3 = ""
 If length(C4) > 2 then C3 = C3||","
 else C4 = ""
 If length(C5) > 2 then C4 = C4||","
 else C5 = ""
 If length(C6) > 2 then C5 = C5||","
 else C6 = ""

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C1
 If C2 /= "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C2
 End
 If C3 /= "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C3
 End
 If C4 /= "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C4
 End
 If C5 /= "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C5
 End
 If C6 /= "" then do
 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C6
 End
 Call ClearValues;
Return

/*------------*/
/* Write the Fixed JCL Array to Disk */
/*------------*/
Proc402:
 OJCL.0 = OJCLCtr

Page [203]

 OPDSN = FixJCL.JCL
 If OJCLCtr = 0 then do
 Say "There are no records to write to" OPDSN"!"
 Return
 Exit
 End
 "Delete" OPDSN
 "Allocate DD(OutFile) DA("OPDSN") new space(1 1) tracks",
 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

 "ExecIO" OJCL.0 "DiskW OutFile (STEM OJCL. FINIS"
 "Free DDNAME(OutFile)"
 Say OJCLCtr "Records written to "OPDSN
 ADDRESS "ISPEXEC" "View Dataset("OPDSN")"
Return

/*------------*/
/* Nested operand isolator */
/*------------*/
/* This routine will isolate operands that are nested within
 parenthesis. It is used mainly for COPIES= and SPACE=.
 Example: Piece3=(1,(1,1,1,1)),DEST=U98,HOLD=NO,
 This routine will split Piece3 into:
 (1,(1,1,1,1)) and DEST=U98,HOLD=NO, */
Proc810:
 If left(Piece3,1) = "(" then do /* May be nested */
 ReturnStr = "(" ; Level = 1; Index = 2
 Do Until Level = 0
 If substr(Piece3,Index,1) = "(" then Level = Level + 1
 If substr(Piece3,Index,1) = ")" then Level = Level - 1
 ReturnStr = ReturnStr||substr(Piece3,Index,1)
 Index = Index + 1
 End
 Piece3 = DelStr(Piece3,1,Index)
 End
 Else Parse var Piece3 ReturnStr "," Piece3 /* No nesting */
Return ReturnStr

/*------------*/
/* End-of-job Processing */
/*------------*/
ProcEOJ:
Return

Page [204]

FX - File name cross-reference

This exec will convert JCL into a list of stepnames and datasetnames, that can be used as
somewhat of a cross-reference.

/* FX - File Cross-Reference - REXX Exec */
/* Written by Dave Grund */
/* This exec will read a set of job control, parse it, and */
/* create a file, one record per datasetname, as follows: */
/* 1- 8 8 Jobname */
/* 9-16 8 Stepname */
/* 17-24 8 DDName */
/* 25-78 54 Datasetname (allowing room for PDS member name) */
/* 79-81 3 Disposition (NEW, OLD, MOD) */

/*------------- Main Body of Program ----------------------------*/
ARG IPDSN
Call Pgm_Init

Do Forever
 Call ReadRec /* Read rec into stack; count */
 If IPEOF = "YES" then Leave
 Pull Record /* Get it from the stack */
 Call IdentifyRecord /* See what kind it is */
 Call ProcessRecord /* Process it */
end

Call ProcEOJ /* EOJ Processing */
/* ADDRESS "ISPEXEC" "Browse Dataset("OPDSN")" */
Exit
/*---*/

/*------------*/
/* Program Initialization */
/*------------*/
Pgm_Init:
"DelStack"
If IPDSN = "" then do
 Say "Command Type:

Syntax: FX DSN"
 Exit
end

"Alloc DDN(InFile) DSN("IPDSN") SHR"
If RC <> 0 then do
 Say "I could not allocate "IPDSN". Sorry."
 Exit
end

Say "FX Working on " IPDSN ": " sysvar(SYSUID) Date(U) Time() "..."

OPDSN = FX.DATAFILE
"Free FI(OutFile)"
"Alloc DD(OutFile) DA("OPDSN") MOD space(15 15) tracks ",
 "Lrecl(81) Block(6156) Recfm(F B)"
If RC <> 0 then do
 Say "I could not allocate "OPDSN". Sorry."

Page [205]

 Exit
end

"NewStack"
IPEOF = "NO" /* Input EOF Switch */
RecType = " " /* Record Type */
Spaces = " "
Spaces = Spaces || Spaces /* Now it's 72 spaces */
JobName = "(Unk)" /* Job Name */
StepName= "(Unk)" /* Step Name */
DDName = "(Unk)" /* DDName */
RecCount = 0 /* Total Records */
Type1Ctr = 0 /* First JCL card of a set */
Type11Ctr = 0 /* Job Cards */
Type12Ctr = 0 /* DD Cards */
Type13Ctr = 0 /* EXEC cards */
Type14Ctr = 0 /* JES (output, message) cards*/
Type15Ctr = 0 /* Other JCL cards: first card*/
Type2Ctr = 0 /* JCL continuations */
Type3Ctr = 0 /* Comment card counter */
Type41Ctr = 0 /* Data card counter */
Type42Ctr = 0 /* end of Data card counter */
Type5Ctr = 0 /* end of job card */
TypeUCtr = 0 /* Unknown */
OpRecCtr = 0 /* Output Records */
DSNFound = 0 /* DSN Found */
DispFound = 0 /* Disp Found */

/*------------*/
ReadRec:
/*------------*/
 "EXECIO 1 DiskR Infile" /* Add the I/P rec to the stack */
 If RC <> 0 then do
 IPEOF = "YES"
 "EXECIO 0 DiskR Infile (Finis" /* Close the input file */
 end
 Else RecCount = RecCount + 1 /* Count the records */
 Return ""

/*------------*/
IdentifyRecord:
/*------------*/
 Part1 = Substr(record,1,2)
 Part2 = Substr(record,3,1)
 Part3 = Substr(record,3,71)
 Spaces2 = Substr(Spaces,3,71)
 If Substr(Record,1,3) = "//*" then Call Proc_Type3
 Else If Part1 = '//' & Part2 /= ' ' then Call Proc_Type1
 Else if Substr(Record,1,3) = "// " then Call Proc_Type2
 Else If Substr(Record,1,3) = "/* " then Call Proc_Type42
 Else If Part1 = '//' & Part3 = Spaces2 then
 Call Proc_Type5
 Else if Substr(Record,1,1) /= "/" then Call Proc_Type41
 Else if Substr(Record,1,9) = "/*MESSAGE" then ,
 Type14Ctr = Type14Ctr + 1
 Else if Substr(Record,1,3) = "/*$" then ,
 Type14Ctr = Type14Ctr + 1
 Else if Substr(Record,1,7) = "/*ROUTE" then ,
 Type14Ctr = Type14Ctr + 1
 Else if Substr(Record,1,8) = "/*NOTIFY" then ,

Page [206]

 Type14Ctr = Type14Ctr + 1
 Else Call Proc_Type_Unk
 Return

Proc_Type1: /* - First JCL cards read */
 RecType = "1 "
 Type1Ctr = Type1Ctr + 1
 FirstBlk = Pos(' ',Record)
 TempRecord = Delstr(Record,1,FirstBlk)
 TempRecord = Strip(TempRecord,L)
 FirstBlk = Pos(' ',TempRecord)
 JCLType = SubStr(TempRecord,1,FirstBlk-1)
 If JCLType = "JOB" then do
 RecType = "11 "
 Type11Ctr = Type11Ctr + 1
 FirstBlk = Pos(' ',Record)
 JobName = SubStr(Record,3,FirstBlk-1)
 end
 else If JCLType = "DD" then do
 RecType = "12 "
 Type12Ctr = Type12Ctr + 1
 FirstBlk = Pos(' ',Record)
 DDName = SubStr(Record,3,FirstBlk-1)
 Call FindDSN; Call FindDisp
 end
 else If JCLType = "EXEC" then do
 RecType = "13 "
 Type13Ctr = Type13Ctr + 1
 FirstBlk = Pos(' ',Record)
 StepName = SubStr(Record,3,FirstBlk-1)
 end
 else If JCLType = "OUTPUT" then do
 RecType = "14 "
 Type14Ctr = Type14Ctr + 1
 end
 else do
 RecType = "15 "
 Type15Ctr = Type15Ctr + 1
 end
Return

Proc_Type2: /*- JCL continuation cards read */
 RecType = "2 "
 Type2Ctr = Type2Ctr + 1
 Call FindDSN; Call FindDisp
Return

Proc_Type3: /*- Comment cards read */
 RecType = "3 "
 Type3Ctr = Type3Ctr + 1
Return

Proc_Type41: /*- Data cards read */
 RecType = "41 "
 Type41Ctr = Type41Ctr + 1
Return

Proc_Type42: /*- End of Data cards read */
 RecType = "42 "
 Type42Ctr = Type42Ctr + 1

Page [207]

Return

Proc_Type5: /*- end of job cards read */
 RecType = "5 "
 Type5Ctr = Type5Ctr + 1
Return

Proc_Type_Unk: /* Unknown type */
 RecType = "? "
 TypeUCtr = TypeUCtr + 1
 Say "Unknown; number " RecCount " was read; Type " RecType,
 " record follows:"
 Say Record
 Say "---"
Return

/* Find the datasetname */
FindDSN:
 DSNLoc = Index(Record,"DSN=")
 If DSNLOC > 0 then do
 TempRec = Delstr(Record,1,DSNLOC+3) /* Delete past dsn= */
 FirstBlk = Pos(' ',TempRec)
 FirstCom = Pos(',',TempRec)
 If FirstCom = 0 then FirstCom = 80 /* In case no comma */
 If FirstBlk < FirstCom then EndPos = FirstBlk
 Else EndPos = FirstCom
 If EndPos = 0 then do
 Say "FindDSN error: " Record
 end
 DSN = SubStr(TempRec,1,EndPos-1)
 DSN = substr(DSN||Spaces,1,54)
 DSNFound = DSNFound + 1
 OPRecPending = "YES"
 end
Return

/* Find the dataset disposition */
FindDisp:
 DispLoc = Index(Record,"DISP=")
 If DispLOC > 0 then do
 TempRec = Delstr(Record,1,DispLOC+4) /* Delete past Disp= */
 FirstBlk = Pos(' ',TempRec)
 EndPos = FirstBlk
 Disp = SubStr(TempRec,1,EndPos-1)
 DispFound = DispFound + 1
 OPRecPending = "YES"
 If substr(Disp,1,2) = "(," then Disp = "NEW"
 else If substr(Disp,1,5) = "SHARE" then disp = "SHR"
 else If substr(Disp,1,4) = "(OLD" then disp = "OLD"
 else If substr(Disp,1,4) = "(MOD" then disp = "MOD"
 else If substr(Disp,1,4) = "(NEW" then disp = "NEW"
 end
Return

/*------------*/
/* Process the Record */
/*------------*/
ProcessRecord:
If OPRecPending = "YES" then do
 If Substr(RecType,1,1) /= '2' then do

Page [208]

 Jobname= substr(Jobname||Spaces,1,8)
 Stepname= substr(Stepname||Spaces,1,8)
 DDName = substr(DDName||Spaces,1,8)
 OPRec = Jobname||StepName||DDName||DSN||Disp
 OpRecPending = "NO"
 OpRecCtr = OpRecCtr + 1
 Push OpRec
 "EXECIO" 1 "DiskW OutFile"
 end
end
Return

/*------------*/
/* End-of-job Processing */
/*------------*/
ProcEOJ:
 "DelStack"
 "Free DDNAME(InFile)"
 "EXECIO" 0 "DiskW OutFile (Finis" /* Close the file */
 Queue "*** End of Job Totals for " IPDSN "***"
 Queue RecCount "records read"
 Queue " "Type1Ctr "First JCL cards read"
 Queue " "Type11Ctr "- Job cards"
 Queue " "Type12Ctr "- DD cards"
 Queue " "Type13Ctr "- EXEC cards"
 Queue " "Type14Ctr "- JES (OUTPUT, MESSAGE) cards"
 If Type15Ctr > 0 then Queue " "Type15Ctr "- other JCL cards"
 Queue " "Type2Ctr "JCL continuation cards read"
 Queue " "Type3Ctr "Comment cards read"
 Queue " "Type41Ctr "Data cards read"
 Queue " "Type42Ctr "End of Data cards read"
 Queue " "Type5Ctr "end of job cards read"
 If TypeUCtr > 0 then Queue " "TypeUCtr "Unknown cards read"
 If TypeUCtr > 0 then Say,
 "Warning: " TypeUCtr "Unknown cards read"
 Queue OpRecCtr "records written"
 OPDSN = FX.LOGFILE
 "Free FI(LogFile)"
 "Alloc DD(LogFile) DA("OPDSN") MOD space(15 1) tracks ",
 "Lrecl(73) Block(6205) Recfm(F B)"
 If RC <> 0 then do
 Say "I could not allocate "OPDSN". Sorry."
 Exit
 end
 Quantity = queued()
 "EXECIO " Quantity " DiskW LogFile (Finis"
Return

Page [209]

HD - Hex Dump

This command will hex dump a sequential file.

/* REXX PROGRAM */
/* HD - HEX DUMP A SEQUENTIAL FILE IN HEX */
/* WRITTEN BY DAVE GRUND */
ARG IPDsn NUMRECS OPDsn

/* CHECK COMMAND LINE ARGUMENTS */
IF IPDsn = '' THEN DO
 SAY 'COMMAND TYPE:

SYNTAX: HD IPDsn NUMRECS OPDSN'
 EXIT
END

/* Some users have turned off their Profile Prefix. */
/* If that is the case with this user, then prefix the OP DSN with */
/* his userid */
If SYSVAR(SYSPREF) = "" then
 DSNPref = USERID()||"."
Else
 DSNPref = ""

IF OPDsn = '' THEN DO
 OPDsn = DSNPREF || "HD.OUTLIST"
END

IF NUMRECS = '' THEN
 NUMRECS = 999999

/* SET OUR CONSTANTS */
DFL = 100 /* FRAGMENT LENGTH OF ONE
LINE */
TESTING = N /* TEST CODE WILL BE
EXECUTED */
SCALE1 = ' 1 2 3 4 5 6'
scale1 = scale1 || ' 7 8 9 10'
SCALE2 = COPIES('....5....0',10)

SAY 'WORKING...'

DUMMY = LISTDSI(IPDsn)
INFLRECL = SYSLRECL
IF INFLRECL > DFL THEN DO
 RECSEGS = TRUNC(INFLRECL/DFL,0) /* NO. OF RECORD SEGMENTS */
 IF INFLRECL/DFL > TRUNC(INFLRECL/DFL,0) THEN
 RECSEGS = RECSEGS + 1
 RECSEGL = DFL /* SEGMENT LENGTH */
 RECSEGLAST = INFLRECL // RECSEGL /* LAST SEGMENT LENGTH */
END
ELSE DO
 RECSEGS = 1 /* NO. OF RECORD SEGMENTS */
 RECSEGL = INFLRECL /* SEGMENT LENGTH */
 RECSEGLAST = INFLRECL /* SEGMENT LENGTH */
END

Page [210]

SAY '*** HD - HEXDUMP, VERS 1.0 ***'
SAY 'IPDsn: ' IPDsn '; LRECL = ' INFLRECL
SAY 'OPDsn: ' OPDsn
IF TESTING = Y THEN DO
 SAY 'NO. OF SEGMENTS TO DISPLAY FOR EACH RECORD: ' RECSEGS
 SAY 'SEGMENT LENGTH: ' RECSEGL
 SAY 'LAST SEGMENT LENGTH: ' RECSEGLAST
END

"ALLOCATE DDNAME(INFILE) DSN(" IPDsn ") SHR "
"DELETE " OPDsn
"ALLOCATE DDNAME(OUTFILE) DSN(" OPDsn ") NEW SPACE(20,20)" ,
 "BLOCK(6171) UNIT(SYSDA) LRECL(121) RECFM(F B)"
"NEWSTACK"
"EXECIO * DISKR INFILE (STEM INFILE. FINIS"
SAY 'INPUT FILE SIZE:' INFILE.0 'RECORDS.'
QUEUE ' DUMP OF DSN:' IPDsn
IF NUMRECS > INFILE.0 THEN
 NUMRECS = INFILE.0
SAY 'DUMPING ' NUMRECS 'RECORDS'
DO I = 1 TO NUMRECS
 ISTR = FORMAT(I,3,0)
 DO J = 1 TO RECSEGS
 SSTR = FORMAT(J,1,0)
 RC = ((J-1)*DFL)+1
 SC = RC // 100
 IF J = RECSEGS THEN
 THISRSL = RECSEGLAST
 ELSE
 THISRSL = RECSEGL
 QUEUE ' 'SUBSTR(SCALE1,SC,THISRSL)
 QUEUE ' 'SUBSTR(SCALE2,SC,THISRSL)
 THISPORTION = SUBSTR(INFILE.I,RC,THISRSL)
 QUEUE ISTR'.'SSTR 'CHAR' THISPORTION

 /* WORK ON THE ZONE PORTION */
 WORKPORTION = C2X(THISPORTION)
 THISPORTIONZONE = ' '
 DO K = 1 TO (THISRSL*2) BY 2
 THISPORTIONZONE = THISPORTIONZONE SUBSTR(WORKPORTION,K,)
 THISPORTIONZONE = SPACE(THISPORTIONZONE,0)
 END
 QUEUE ISTR'.'SSTR' ZONE' THISPORTIONZONE

 /* WORK ON THE NUMERIC PORTION */
 WORKPORTION = C2X(THISPORTION)
 THISPORTIONNUMR = ' '
 DO K = 2 TO (THISRSL*2) BY 2
 THISPORTIONNUMR = THISPORTIONNUMR SUBSTR(WORKPORTION,K,)
 THISPORTIONNUMR = SPACE(THISPORTIONNUMR,0)
 END
 QUEUE ISTR'.'SSTR' NUMR' THISPORTIONNUMR
 END
 QUEUE ' '
 HOW_MANY = QUEUED()
 "EXECIO" HOW_MANY "DISKW OUTFILE"
END
"EXECIO" 0 "DISKW OUTFILE (FINIS" /* CLOSE THE FILE */
"FREE DDNAME(INFILE OUTFILE)"
SAY 'DUMP COMPLETE. CHECK ' OPDsn

Page [211]

"ISPEXEC BROWSE DATASET(" OPDsn

Page [212]

INIT - Establish my TSO environment

I use this Rexx exec to establish my TSO environment: allocate my Rexx libraries,
tellme what the temperature is, etc.

/* Init - TSO Session Initialization - REXX EXEC */

Address TSO
"Free Fi(SYSEXEC)"
"Alloc Fi(SYSEXEC) DA('GRUND.TSTREXX.EXEC' 'GRUND.REXX.EXEC') SHR "

Say;Say;Say /* Start at the top of the screen */
Say "Hello, and welcome to TSO, courtesy of Dave Grund's INIT EXEC."

Say "Today is" Date(W) Date(U) "; julian is " substr(Date(J),3,3)

MoNum = substr(Date(U),1,2)
If Monum = 1 then Do; Low = 0; High = 55; end
If Monum = 2 then Do; Low = 0; High = 60; end
If Monum = 3 then Do; Low = 15; High = 65; end
If Monum = 4 then Do; Low = 35; High = 80; end
If Monum = 5 then Do; Low = 45; High = 85; end
If Monum = 6 then Do; Low = 50; High = 90; end
If Monum = 7 then Do; Low = 55; High = 95; end
If Monum = 8 then Do; Low = 55; High = 95; end
If Monum = 9 then Do; Low = 50; High = 90; end
If Monum = 10 then Do; Low = 30; High = 85; end
If Monum = 11 then Do; Low = 10; High = 75; end
If Monum = 12 then Do; Low = 0; High = 60; end

Temp = Random(Low,High)
Say "The temperature right now is " Temp

TSOMSG = "I executed your INIT exec on " || Date(W) Date(U) "at" Time(C)
TSOMSG = TSOMSG || ", Dave"
"Send '"TSOMSG || "' U(GRUND) LOGON NoWait"

InitSPF

Page [213]

INITSPF - Establish my ISPF environment

I use this command to establish my ISPF environment, which is mainly to allocate
my test ISPF libraries in front of the production ones.
/* InitSPF - REXX EXEC */
/* Initialize personal ISPF environment */

UserID = SYSVAR(SYSUID)
Say "Initializing personal ISPF environment..."
Address TSO
/* Allocate panel libraries */
"Free Fi(ISPPLIB)"
"Alloc Fi(ISPPLIB) DA('GRUND.ISPF.PANELS' " ,
 " 'ISR.IBM.ISRPLIB' " ,
 " 'ISP.IBM.ISPPLIB' ," ,
 " 'ISR.PRODUCT.ISRPLIB') SHR "

/* Allocate message libraries */
"Free Fi(ISPMLIB)"
"Alloc Fi(ISPMLIB) DA('GRUND.ISPF.MESSAGES'" ,
 " 'ISR.UP.ISRMLIB' " ,
 " 'ISR.IBM.ISRMLIB' " ,
 " 'ISP.IBM.ISPMLIB' ," ,
 " 'ISR.PRODUCT.ISRMLIB') SHR "

/* Allocate input table libraries */
"Free Fi(ISPTLIB)"
"Alloc Fi(ISPTLIB) DA('GRUND.ISPF.TABLES' " ,
 " 'ISR.IBM.ISRTLIB' " ,
 " 'ISP.IBM.ISPTLIB') SHR "

/* Allocate output table libraries */
"Free Fi(ISPTABL)"
"Alloc Fi(ISPTABL) DA('GRUND.ISPF.TABLES') SHR"

/* Allocate skeleton libraries */
"Free Fi(ISPSLIB)"
"Alloc Fi(ISPSLIB) DA('GRUND.ISPF.SKELETON'" ,
 " 'ISR.IBM.ISRSLIB' " ,
 " 'ISP.IBM.ISPSLIB' " ,
 " 'ISR.PRODUCT.ISRSLIB') SHR "
Say "...Done"

Page [214]

JOBCARD - Create a jobcard

I use this exec to add a standard job card to my JCL

/* JOBCARD - ISPF Edit Macro (REXX EXEC) */
ADDRESS "ISREDIT" "MACRO PROCESS"
address "ISREDIT" "(XDSN)=DATASET"
address "ISREDIT" "(XMEM)=MEMBER"
J01 = "//"sysvar(sysuid)"A JOB (accounting info),@DAVE GRUND@, "
J021 = "// MSGLEVEL=1,MSGCLASS=C,CLASS=C,PASSWORD=,TIME=1,
"
J022 = "// USER=" || Sysvar(sysuid) || ",NOTIFY=" ||
Sysvar(Sysuid)
J031 = "//*-----------------------------------"
J032 = "--------------------------------*"
J03 = J031 || J032
J04 = "//* CREATED BY JOBCARD MACRO" date(U) time()
J05 = "//* THIS JOB SUBMITTED FROM &XDSN(&XMEM)"
J06 = "//* ** JOB STEPS **"
J07 = "//* STEP010 - IEHGOD00 - DO ANYTHING YOU WISH"
J08 = "//* "
J09 = "// JCLLIB ORDER=(GRUND.INCLUDE.JCL)"
J10 = "//STEP010 EXEC PGM=IEHGOD00,REGION=640K"
address "ISREDIT" "LINE_AFTER 00 = " "'"J01"'"
address "ISREDIT" "LINE_AFTER 01 =" "'"J021"'"
address "ISREDIT" "LINE_AFTER 02 =" "'"J022"'"
address "ISREDIT" "LINE_AFTER 03 =" "'"J03"'"
address "ISREDIT" "LINE_AFTER 04 =" "'"J04"'"
address "ISREDIT" "LINE_AFTER 05 =" "'"J05"'"
address "ISREDIT" "LINE_AFTER 06 =" "'"J03"'"
address "ISREDIT" "LINE_AFTER 07 =" "'"J06"'"
address "ISREDIT" "LINE_AFTER 08 =" "'"J07"'"
address "ISREDIT" "LINE_AFTER 09 =" "'"J03"'"
address "ISREDIT" "LINE_AFTER 10 =" "'"J09"'"
address "ISREDIT" "LINE_AFTER 11 =" "'"J08"'"
address "ISREDIT" "LINE_AFTER 12 =" "'"J03"'"
address "ISREDIT" "LINE_AFTER 13 =" "'"J07"'"
address "ISREDIT" "LINE_AFTER 14 =" "'"J03"'"
address "ISREDIT" "LINE_AFTER 15 =" "'"J10"'"

/* NOW PUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */
ADDRESS "ISREDIT" "LABEL 4 = .LSTART "
ADDRESS "ISREDIT" "LABEL 8 = .LEND "
ADDRESS "ISREDIT" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"
ADDRESS "ISREDIT" "RESET"

/* I can't get apostrophes around the name to begin with */
/* because of syntax restrictions. So do it now. */
ADDRESS "ISREDIT" "LABEL 1 = .LONLY "
ADDRESS "ISREDIT" "CHANGE '@' ''' .LONLY .LONLY ALL"

ADDRESS "ISREDIT" "Cursor = 1 0"

address "ISREDIT" "LINE_AFTER 0 = NoteLine",
 "'"Jobcard generated."'"
address "ISREDIT" "LINE_AFTER 15 = NoteLine",
 "'--'"

Page [215]

JUMBLE - Display All Combinations of Letters

/* Jumble - Print combinations of letters - Rexx Exec */
/* This is a Rexx learning exercise that has a practical value: */
/* to help you solve some of those nasty newspaper jumble puzzles. */

/* There is a lot of room for code to remove more combinations */
/* of letters that cannot appear in words in the English language. */

/* This exec helps to demonstrate the blazing speed of a mainframe */
/* computer, so don't hesitate to add whatever code is necessary! */
ARG Letters

Call Proc01 /* Initialization */
/* Call Proc10 */ /* Create number combos */
Call Proc10A /* Use precalced combos */
Call Proc20 /* Create letter combos */
Call Proc30 /* Delete impossible words */
Call Proc40 /* Sort the word array */
Call Proc50 /* List the word array */
Exit

/*-----------*/
/* Proc01: Initialization */
/*-----------*/
Proc01:
 If Letters = "" then do
 Say "Please supply the letters:"
 Pull Letters
 If Letters = "" then exit
 End
 Say;Say;Say
 Say "The letters you gave me to work with are:" Letters
 /* The number of combinations of letters is the length of */
 /* the word - factorial. */
 WordLen = length(Letters)
 If WordLen < 4 then do
 Say "Very funny. You need help from a computer for "Letters"?"
 Exit
 End
 If WordLen > 6 then do
 Say "I am not programmed to handle more than 6-character words"
 Say "Sorry!"
 Exit
 End
 LastWord = ""
Return

/*-----------*/
/* Create number combinations */
/*-----------*/
/* This routine will create an array of number combinations that
 will be used to create an array of letter combinations later. */
/* This is where the program spends most of its time. */
/* For a six-letter word, 8+ minutes. */
Proc10:
 If WordLen = 6 then do
 Say "Staring to create number combinations. Patience please..."

Page [216]

 STime = Time(E) /* Start time */
 End
 ComboCount = 0; WordArrayEnts = 0

 MaxNum = right('654322',WordLen)
 StartNum = left('123456',WordLen)

 Do I = StartNum to MaxNum
 AcceptThisCombo = 'Y'
 /* First see if any of the digits is > the no. of chars */
 Do J = 1 to WordLen
 /* Say "In "I", I am looking at:"Substr(I,J,1) */
 If Substr(I,J,1) = '0' then AcceptThisCombo = 'N'
 If Substr(I,J,1) > WordLen then Iterate I
 End

 If Substr(I,1,1) = SubStr(I,2,1) then AcceptThisCombo = 'N'
 If Substr(I,1,1) = SubStr(I,3,1) then AcceptThisCombo = 'N'
 If Substr(I,1,1) = SubStr(I,4,1) then AcceptThisCombo = 'N'
 If Substr(I,2,1) = SubStr(I,3,1) then AcceptThisCombo = 'N'
 If Substr(I,2,1) = SubStr(I,4,1) then AcceptThisCombo = 'N'
 If Substr(I,3,1) = SubStr(I,4,1) then AcceptThisCombo = 'N'

 If WordLen > 4 then do
 If Substr(I,1,1) = SubStr(I,5,1) then AcceptThisCombo = 'N'
 If Substr(I,2,1) = SubStr(I,5,1) then AcceptThisCombo = 'N'
 If Substr(I,3,1) = SubStr(I,5,1) then AcceptThisCombo = 'N'
 If Substr(I,4,1) = SubStr(I,5,1) then AcceptThisCombo = 'N'
 End

 If WordLen > 5 then do
 If Substr(I,1,1) = SubStr(I,6,1) then AcceptThisCombo = 'N'
 If Substr(I,2,1) = SubStr(I,6,1) then AcceptThisCombo = 'N'
 If Substr(I,3,1) = SubStr(I,6,1) then AcceptThisCombo = 'N'
 If Substr(I,4,1) = SubStr(I,6,1) then AcceptThisCombo = 'N'
 If Substr(I,5,1) = SubStr(I,6,1) then AcceptThisCombo = 'N'
 End

 /* Finally, see if we have not removed this combo */
 If AcceptThisCombo = 'Y' then do
 ComboCount = ComboCount + 1
 /* Say ComboCount ":"I */
 ComboArray.ComboCount = I
 End
 End
 ComboArray.0 = ComboCount
 ETime = Time(E) /* End Time */
 Duration = ETime - STime
 Say "That part took" Duration "seconds!"
Return

/*-----------*/
/* Use Pre-calculated cominations, to save the program a lot of time */
/*-----------*/
/* This is a hard-coded version of the array that is created in Proc10
 above. */
Proc10A:
 If WordLen = 6 then STime = Time(E) /* Start time */

 ComboArray.1=123456

Page [217]

 ComboArray.2=123465
 ComboArray.3=123546
 ComboArray.4=123564
 ComboArray.5=123645
 ComboArray.6=123654
 ComboArray.7=124356
 ComboArray.8=124365
 ComboArray.9=124536
 ComboArray.10=124563
 ComboArray.11=124635
 ComboArray.12=124653
 ComboArray.13=125346
 ComboArray.14=125364
 ComboArray.15=125436
 ComboArray.16=125463
 ComboArray.17=125634
 ComboArray.18=125643
 ComboArray.19=126345
 ComboArray.20=126354
 ComboArray.21=126435
 ComboArray.22=126453
 ComboArray.23=126534
 ComboArray.24=126543
 ComboArray.25=132456
 ComboArray.26=132465
 ComboArray.27=132546
 ComboArray.28=132564
 ComboArray.29=132645
 ComboArray.30=132654
 ComboArray.31=134256
 ComboArray.32=134265
 ComboArray.33=134526
 ComboArray.34=134562
 ComboArray.35=134625
 ComboArray.36=134652
 ComboArray.37=135246
 ComboArray.38=135264
 ComboArray.39=135426
 ComboArray.40=135462
 ComboArray.41=135624
 ComboArray.42=135642
 ComboArray.43=136245
 ComboArray.44=136254
 ComboArray.45=136425
 ComboArray.46=136452
 ComboArray.47=136524
 ComboArray.48=136542
 ComboArray.49=142356
 ComboArray.50=142365
 ComboArray.51=142536
 ComboArray.52=142563
 ComboArray.53=142635
 ComboArray.54=142653
 ComboArray.55=143256
 ComboArray.56=143265
 ComboArray.57=143526
 ComboArray.58=143562
 ComboArray.59=143625
 ComboArray.60=143652
 ComboArray.61=145236

Page [218]

 ComboArray.62=145263
 ComboArray.63=145326
 ComboArray.64=145362
 ComboArray.65=145623
 ComboArray.66=145632
 ComboArray.67=146235
 ComboArray.68=146253
 ComboArray.69=146325
 ComboArray.70=146352
 ComboArray.71=146523
 ComboArray.72=146532
 ComboArray.73=152346
 ComboArray.74=152364
 ComboArray.75=152436
 ComboArray.76=152463
 ComboArray.77=152634
 ComboArray.78=152643
 ComboArray.79=153246
 ComboArray.80=153264
 ComboArray.81=153426
 ComboArray.82=153462
 ComboArray.83=153624
 ComboArray.84=153642
 ComboArray.85=154236
 ComboArray.86=154263
 ComboArray.87=154326
 ComboArray.88=154362
 ComboArray.89=154623
 ComboArray.90=154632
 ComboArray.91=156234
 ComboArray.92=156243
 ComboArray.93=156324
 ComboArray.94=156342
 ComboArray.95=156423
 ComboArray.96=156432
 ComboArray.97=162345
 ComboArray.98=162354
 ComboArray.99=162435
 ComboArray.100=162453
 ComboArray.101=162534
 ComboArray.102=162543
 ComboArray.103=163245
 ComboArray.104=163254
 ComboArray.105=163425
 ComboArray.106=163452
 ComboArray.107=163524
 ComboArray.108=163542
 ComboArray.109=164235
 ComboArray.110=164253
 ComboArray.111=164325
 ComboArray.112=164352
 ComboArray.113=164523
 ComboArray.114=164532
 ComboArray.115=165234
 ComboArray.116=165243
 ComboArray.117=165324
 ComboArray.118=165342
 ComboArray.119=165423
 ComboArray.120=165432
 ComboArray.121=213456

Page [219]

 ComboArray.122=213465
 ComboArray.123=213546
 ComboArray.124=213564
 ComboArray.125=213645
 ComboArray.126=213654
 ComboArray.127=214356
 ComboArray.128=214365
 ComboArray.129=214536
 ComboArray.130=214563
 ComboArray.131=214635
 ComboArray.132=214653
 ComboArray.133=215346
 ComboArray.134=215364
 ComboArray.135=215436
 ComboArray.136=215463
 ComboArray.137=215634
 ComboArray.138=215643
 ComboArray.139=216345
 ComboArray.140=216354
 ComboArray.141=216435
 ComboArray.142=216453
 ComboArray.143=216534
 ComboArray.144=216543
 ComboArray.145=231456
 ComboArray.146=231465
 ComboArray.147=231546
 ComboArray.148=231564
 ComboArray.149=231645
 ComboArray.150=231654
 ComboArray.151=234156
 ComboArray.152=234165
 ComboArray.153=234516
 ComboArray.154=234561
 ComboArray.155=234615
 ComboArray.156=234651
 ComboArray.157=235146
 ComboArray.158=235164
 ComboArray.159=235416
 ComboArray.160=235461
 ComboArray.161=235614
 ComboArray.162=235641
 ComboArray.163=236145
 ComboArray.164=236154
 ComboArray.165=236415
 ComboArray.166=236451
 ComboArray.167=236514
 ComboArray.168=236541
 ComboArray.169=241356
 ComboArray.170=241365
 ComboArray.171=241536
 ComboArray.172=241563
 ComboArray.173=241635
 ComboArray.174=241653
 ComboArray.175=243156
 ComboArray.176=243165
 ComboArray.177=243516
 ComboArray.178=243561
 ComboArray.179=243615
 ComboArray.180=243651
 ComboArray.181=245136

Page [220]

 ComboArray.182=245163
 ComboArray.183=245316
 ComboArray.184=245361
 ComboArray.185=245613
 ComboArray.186=245631
 ComboArray.187=246135
 ComboArray.188=246153
 ComboArray.189=246315
 ComboArray.190=246351
 ComboArray.191=246513
 ComboArray.192=246531
 ComboArray.193=251346
 ComboArray.194=251364
 ComboArray.195=251436
 ComboArray.196=251463
 ComboArray.197=251634
 ComboArray.198=251643
 ComboArray.199=253146
 ComboArray.200=253164
 ComboArray.201=253416
 ComboArray.202=253461
 ComboArray.203=253614
 ComboArray.204=253641
 ComboArray.205=254136
 ComboArray.206=254163
 ComboArray.207=254316
 ComboArray.208=254361
 ComboArray.209=254613
 ComboArray.210=254631
 ComboArray.211=256134
 ComboArray.212=256143
 ComboArray.213=256314
 ComboArray.214=256341
 ComboArray.215=256413
 ComboArray.216=256431
 ComboArray.217=261345
 ComboArray.218=261354
 ComboArray.219=261435
 ComboArray.220=261453
 ComboArray.221=261534
 ComboArray.222=261543
 ComboArray.223=263145
 ComboArray.224=263154
 ComboArray.225=263415
 ComboArray.226=263451
 ComboArray.227=263514
 ComboArray.228=263541
 ComboArray.229=264135
 ComboArray.230=264153
 ComboArray.231=264315
 ComboArray.232=264351
 ComboArray.233=264513
 ComboArray.234=264531
 ComboArray.235=265134
 ComboArray.236=265143
 ComboArray.237=265314
 ComboArray.238=265341
 ComboArray.239=265413
 ComboArray.240=265431
 ComboArray.241=312456

Page [221]

 ComboArray.242=312465
 ComboArray.243=312546
 ComboArray.244=312564
 ComboArray.245=312645
 ComboArray.246=312654
 ComboArray.247=314256
 ComboArray.248=314265
 ComboArray.249=314526
 ComboArray.250=314562
 ComboArray.251=314625
 ComboArray.252=314652
 ComboArray.253=315246
 ComboArray.254=315264
 ComboArray.255=315426
 ComboArray.256=315462
 ComboArray.257=315624
 ComboArray.258=315642
 ComboArray.259=316245
 ComboArray.260=316254
 ComboArray.261=316425
 ComboArray.262=316452
 ComboArray.263=316524
 ComboArray.264=316542
 ComboArray.265=321456
 ComboArray.266=321465
 ComboArray.267=321546
 ComboArray.268=321564
 ComboArray.269=321645
 ComboArray.270=321654
 ComboArray.271=324156
 ComboArray.272=324165
 ComboArray.273=324516
 ComboArray.274=324561
 ComboArray.275=324615
 ComboArray.276=324651
 ComboArray.277=325146
 ComboArray.278=325164
 ComboArray.279=325416
 ComboArray.280=325461
 ComboArray.281=325614
 ComboArray.282=325641
 ComboArray.283=326145
 ComboArray.284=326154
 ComboArray.285=326415
 ComboArray.286=326451
 ComboArray.287=326514
 ComboArray.288=326541
 ComboArray.289=341256
 ComboArray.290=341265
 ComboArray.291=341526
 ComboArray.292=341562
 ComboArray.293=341625
 ComboArray.294=341652
 ComboArray.295=342156
 ComboArray.296=342165
 ComboArray.297=342516
 ComboArray.298=342561
 ComboArray.299=342615
 ComboArray.300=342651
 ComboArray.301=345126

Page [222]

 ComboArray.302=345162
 ComboArray.303=345216
 ComboArray.304=345261
 ComboArray.305=345612
 ComboArray.306=345621
 ComboArray.307=346125
 ComboArray.308=346152
 ComboArray.309=346215
 ComboArray.310=346251
 ComboArray.311=346512
 ComboArray.312=346521
 ComboArray.313=351246
 ComboArray.314=351264
 ComboArray.315=351426
 ComboArray.316=351462
 ComboArray.317=351624
 ComboArray.318=351642
 ComboArray.319=352146
 ComboArray.320=352164
 ComboArray.321=352416
 ComboArray.322=352461
 ComboArray.323=352614
 ComboArray.324=352641
 ComboArray.325=354126
 ComboArray.326=354162
 ComboArray.327=354216
 ComboArray.328=354261
 ComboArray.329=354612
 ComboArray.330=354621
 ComboArray.331=356124
 ComboArray.332=356142
 ComboArray.333=356214
 ComboArray.334=356241
 ComboArray.335=356412
 ComboArray.336=356421
 ComboArray.337=361245
 ComboArray.338=361254
 ComboArray.339=361425
 ComboArray.340=361452
 ComboArray.341=361524
 ComboArray.342=361542
 ComboArray.343=362145
 ComboArray.344=362154
 ComboArray.345=362415
 ComboArray.346=362451
 ComboArray.347=362514
 ComboArray.348=362541
 ComboArray.349=364125
 ComboArray.350=364152
 ComboArray.351=364215
 ComboArray.352=364251
 ComboArray.353=364512
 ComboArray.354=364521
 ComboArray.355=365124
 ComboArray.356=365142
 ComboArray.357=365214
 ComboArray.358=365241
 ComboArray.359=365412
 ComboArray.360=365421
 ComboArray.361=412356

Page [223]

 ComboArray.362=412365
 ComboArray.363=412536
 ComboArray.364=412563
 ComboArray.365=412635
 ComboArray.366=412653
 ComboArray.367=413256
 ComboArray.368=413265
 ComboArray.369=413526
 ComboArray.370=413562
 ComboArray.371=413625
 ComboArray.372=413652
 ComboArray.373=415236
 ComboArray.374=415263
 ComboArray.375=415326
 ComboArray.376=415362
 ComboArray.377=415623
 ComboArray.378=415632
 ComboArray.379=416235
 ComboArray.380=416253
 ComboArray.381=416325
 ComboArray.382=416352
 ComboArray.383=416523
 ComboArray.384=416532
 ComboArray.385=421356
 ComboArray.386=421365
 ComboArray.387=421536
 ComboArray.388=421563
 ComboArray.389=421635
 ComboArray.390=421653
 ComboArray.391=423156
 ComboArray.392=423165
 ComboArray.393=423516
 ComboArray.394=423561
 ComboArray.395=423615
 ComboArray.396=423651
 ComboArray.397=425136
 ComboArray.398=425163
 ComboArray.399=425316
 ComboArray.400=425361
 ComboArray.401=425613
 ComboArray.402=425631
 ComboArray.403=426135
 ComboArray.404=426153
 ComboArray.405=426315
 ComboArray.406=426351
 ComboArray.407=426513
 ComboArray.408=426531
 ComboArray.409=431256
 ComboArray.410=431265
 ComboArray.411=431526
 ComboArray.412=431562
 ComboArray.413=431625
 ComboArray.414=431652
 ComboArray.415=432156
 ComboArray.416=432165
 ComboArray.417=432516
 ComboArray.418=432561
 ComboArray.419=432615
 ComboArray.420=432651
 ComboArray.421=435126

Page [224]

 ComboArray.422=435162
 ComboArray.423=435216
 ComboArray.424=435261
 ComboArray.425=435612
 ComboArray.426=435621
 ComboArray.427=436125
 ComboArray.428=436152
 ComboArray.429=436215
 ComboArray.430=436251
 ComboArray.431=436512
 ComboArray.432=436521
 ComboArray.433=451236
 ComboArray.434=451263
 ComboArray.435=451326
 ComboArray.436=451362
 ComboArray.437=451623
 ComboArray.438=451632
 ComboArray.439=452136
 ComboArray.440=452163
 ComboArray.441=452316
 ComboArray.442=452361
 ComboArray.443=452613
 ComboArray.444=452631
 ComboArray.445=453126
 ComboArray.446=453162
 ComboArray.447=453216
 ComboArray.448=453261
 ComboArray.449=453612
 ComboArray.450=453621
 ComboArray.451=456123
 ComboArray.452=456132
 ComboArray.453=456213
 ComboArray.454=456231
 ComboArray.455=456312
 ComboArray.456=456321
 ComboArray.457=461235
 ComboArray.458=461253
 ComboArray.459=461325
 ComboArray.460=461352
 ComboArray.461=461523
 ComboArray.462=461532
 ComboArray.463=462135
 ComboArray.464=462153
 ComboArray.465=462315
 ComboArray.466=462351
 ComboArray.467=462513
 ComboArray.468=462531
 ComboArray.469=463125
 ComboArray.470=463152
 ComboArray.471=463215
 ComboArray.472=463251
 ComboArray.473=463512
 ComboArray.474=463521
 ComboArray.475=465123
 ComboArray.476=465132
 ComboArray.477=465213
 ComboArray.478=465231
 ComboArray.479=465312
 ComboArray.480=465321
 ComboArray.481=512346

Page [225]

 ComboArray.482=512364
 ComboArray.483=512436
 ComboArray.484=512463
 ComboArray.485=512634
 ComboArray.486=512643
 ComboArray.487=513246
 ComboArray.488=513264
 ComboArray.489=513426
 ComboArray.490=513462
 ComboArray.491=513624
 ComboArray.492=513642
 ComboArray.493=514236
 ComboArray.494=514263
 ComboArray.495=514326
 ComboArray.496=514362
 ComboArray.497=514623
 ComboArray.498=514632
 ComboArray.499=516234
 ComboArray.500=516243
 ComboArray.501=516324
 ComboArray.502=516342
 ComboArray.503=516423
 ComboArray.504=516432
 ComboArray.505=521346
 ComboArray.506=521364
 ComboArray.507=521436
 ComboArray.508=521463
 ComboArray.509=521634
 ComboArray.510=521643
 ComboArray.511=523146
 ComboArray.512=523164
 ComboArray.513=523416
 ComboArray.514=523461
 ComboArray.515=523614
 ComboArray.516=523641
 ComboArray.517=524136
 ComboArray.518=524163
 ComboArray.519=524316
 ComboArray.520=524361
 ComboArray.521=524613
 ComboArray.522=524631
 ComboArray.523=526134
 ComboArray.524=526143
 ComboArray.525=526314
 ComboArray.526=526341
 ComboArray.527=526413
 ComboArray.528=526431
 ComboArray.529=531246
 ComboArray.530=531264
 ComboArray.531=531426
 ComboArray.532=531462
 ComboArray.533=531624
 ComboArray.534=531642
 ComboArray.535=532146
 ComboArray.536=532164
 ComboArray.537=532416
 ComboArray.538=532461
 ComboArray.539=532614
 ComboArray.540=532641
 ComboArray.541=534126

Page [226]

 ComboArray.542=534162
 ComboArray.543=534216
 ComboArray.544=534261
 ComboArray.545=534612
 ComboArray.546=534621
 ComboArray.547=536124
 ComboArray.548=536142
 ComboArray.549=536214
 ComboArray.550=536241
 ComboArray.551=536412
 ComboArray.552=536421
 ComboArray.553=541236
 ComboArray.554=541263
 ComboArray.555=541326
 ComboArray.556=541362
 ComboArray.557=541623
 ComboArray.558=541632
 ComboArray.559=542136
 ComboArray.560=542163
 ComboArray.561=542316
 ComboArray.562=542361
 ComboArray.563=542613
 ComboArray.564=542631
 ComboArray.565=543126
 ComboArray.566=543162
 ComboArray.567=543216
 ComboArray.568=543261
 ComboArray.569=543612
 ComboArray.570=543621
 ComboArray.571=546123
 ComboArray.572=546132
 ComboArray.573=546213
 ComboArray.574=546231
 ComboArray.575=546312
 ComboArray.576=546321
 ComboArray.577=561234
 ComboArray.578=561243
 ComboArray.579=561324
 ComboArray.580=561342
 ComboArray.581=561423
 ComboArray.582=561432
 ComboArray.583=562134
 ComboArray.584=562143
 ComboArray.585=562314
 ComboArray.586=562341
 ComboArray.587=562413
 ComboArray.588=562431
 ComboArray.589=563124
 ComboArray.590=563142
 ComboArray.591=563214
 ComboArray.592=563241
 ComboArray.593=563412
 ComboArray.594=563421
 ComboArray.595=564123
 ComboArray.596=564132
 ComboArray.597=564213
 ComboArray.598=564231
 ComboArray.599=564312
 ComboArray.600=564321
 ComboArray.601=612345

Page [227]

 ComboArray.602=612354
 ComboArray.603=612435
 ComboArray.604=612453
 ComboArray.605=612534
 ComboArray.606=612543
 ComboArray.607=613245
 ComboArray.608=613254
 ComboArray.609=613425
 ComboArray.610=613452
 ComboArray.611=613524
 ComboArray.612=613542
 ComboArray.613=614235
 ComboArray.614=614253
 ComboArray.615=614325
 ComboArray.616=614352
 ComboArray.617=614523
 ComboArray.618=614532
 ComboArray.619=615234
 ComboArray.620=615243
 ComboArray.621=615324
 ComboArray.622=615342
 ComboArray.623=615423
 ComboArray.624=615432
 ComboArray.625=621345
 ComboArray.626=621354
 ComboArray.627=621435
 ComboArray.628=621453
 ComboArray.629=621534
 ComboArray.630=621543
 ComboArray.631=623145
 ComboArray.632=623154
 ComboArray.633=623415
 ComboArray.634=623451
 ComboArray.635=623514
 ComboArray.636=623541
 ComboArray.637=624135
 ComboArray.638=624153
 ComboArray.639=624315
 ComboArray.640=624351
 ComboArray.641=624513
 ComboArray.642=624531
 ComboArray.643=625134
 ComboArray.644=625143
 ComboArray.645=625314
 ComboArray.646=625341
 ComboArray.647=625413
 ComboArray.648=625431
 ComboArray.649=631245
 ComboArray.650=631254
 ComboArray.651=631425
 ComboArray.652=631452
 ComboArray.653=631524
 ComboArray.654=631542
 ComboArray.655=632145
 ComboArray.656=632154
 ComboArray.657=632415
 ComboArray.658=632451
 ComboArray.659=632514
 ComboArray.660=632541
 ComboArray.661=634125

Page [228]

 ComboArray.662=634152
 ComboArray.663=634215
 ComboArray.664=634251
 ComboArray.665=634512
 ComboArray.666=634521
 ComboArray.667=635124
 ComboArray.668=635142
 ComboArray.669=635214
 ComboArray.670=635241
 ComboArray.671=635412
 ComboArray.672=635421
 ComboArray.673=641235
 ComboArray.674=641253
 ComboArray.675=641325
 ComboArray.676=641352
 ComboArray.677=641523
 ComboArray.678=641532
 ComboArray.679=642135
 ComboArray.680=642153
 ComboArray.681=642315
 ComboArray.682=642351
 ComboArray.683=642513
 ComboArray.684=642531
 ComboArray.685=643125
 ComboArray.686=643152
 ComboArray.687=643215
 ComboArray.688=643251
 ComboArray.689=643512
 ComboArray.690=643521
 ComboArray.691=645123
 ComboArray.692=645132
 ComboArray.693=645213
 ComboArray.694=645231
 ComboArray.695=645312
 ComboArray.696=645321
 ComboArray.697=651234
 ComboArray.698=651243
 ComboArray.699=651324
 ComboArray.700=651342
 ComboArray.701=651423
 ComboArray.702=651432
 ComboArray.703=652134
 ComboArray.704=652143
 ComboArray.705=652314
 ComboArray.706=652341
 ComboArray.707=652413
 ComboArray.708=652431
 ComboArray.709=653124
 ComboArray.710=653142
 ComboArray.711=653214
 ComboArray.712=653241
 ComboArray.713=653412
 ComboArray.714=653421
 ComboArray.715=654123
 ComboArray.716=654132
 ComboArray.717=654213
 ComboArray.718=654231
 ComboArray.719=654312
 ComboArray.720=654321
 ComboArray.0 = 720

Page [229]

 ETime = Time(E) /* End Time */
 Duration = ETime - STime
 Say "That part took" Duration "seconds!"
Return

/*-----------*/
/* Create letter combinations */
/*-----------*/
Proc20:
 LastWord = ""
 WordArrayEnts = 0
 Do I = 1 to ComboArray.0
 Index1 = substr(ComboArray.I,1,1)
 Index2 = substr(ComboArray.I,2,1)
 Index3 = substr(ComboArray.I,3,1)
 Index4 = substr(ComboArray.I,4,1)
 If WordLen > 4 then Index5 = substr(ComboArray.I,5,1)
 If WordLen > 5 then Index6 = substr(ComboArray.I,6,1)

 TW = substr(Letters,Index1,1) || ,
 substr(Letters,Index2,1) || ,
 substr(Letters,Index3,1) || ,
 substr(Letters,Index4,1)

 If WordLen > 4 then TW = TW||substr(Letters,Index5,1)
 If WordLen > 5 then TW = TW||substr(Letters,Index6,1)

 WordArrayEnts = WordArrayEnts + 1
 WordArray.WordArrayEnts = TW
 End
 WordArray.0 = WordArrayEnts
 Say "I generated "WordArrayEnts WordLen"- letter combinations."
Return

/*-----------*/
/* Delete Impossible Words from the Array */
/*-----------*/
Proc30:
 Call Proc302 /* Build the NM3Str: 3-chr, anywhere */
 Call Proc303 /* Build the NS2Str: 2-chr, start */
 Call Proc304 /* Build the NE2Str: 2-chr, end */
 Call Proc305 /* Build the NS3Str: 3-chr, start */
 Call Proc306 /* Build the NE3Str: 3-chr, end */
 NewWordArrayEnts = 0
 Do I = 1 to WordArrayEnts
 ThisWord = WordArray.I
 If LastWord = ThisWord then Iterate /* Bypass duplicates */
 LastWord = ThisWord

 /* Delete words that contain the 3-letter combinations that
 appear in the above NM3Str array */
 IsIn = false
 /* Say "NM3Str="NM3Str */
 Do Z = 1 to length(ThisWord) - 2
 ThisCheck = substr(ThisWord,Z,3)
 If Pos(ThisCheck,NM3Str) > 0 then IsIn = true
 If IsIn = true then Leave
 End
 If IsIn = true then iterate

Page [230]

 /* Delete words that start with letters that appear in the
 above array */
 If Pos(left(ThisWord,2),NS2Str) > 0 then Iterate
 If Pos(left(ThisWord,3),NS3Str) > 0 then Iterate

 /* Delete words that end with letters that appear in the
 above (NE2Str) array */
 If Pos(right(ThisWord,2),NE2Str) > 0 then Iterate
 If Pos(right(ThisWord,3),NE3Str) > 0 then Iterate

 /* Miscellaneous eliminations */
 /* A 'Q' MUST be followed by a 'U' */
 If Pos('Q',ThisWord) > 0 then do
 ThisSpot = Pos('QU',ThisWord)
 If ThisSpot = 0 then Iterate
 /* "QU" must be followed by A, E, I, or O */
 ThisSet = substr(ThisWord,ThisSpot,3)
 If (ThisSet = 'QUA') | (ThisSet = 'QUE') | (ThisSet = 'QUI') | ,
 (ThisSet = 'QUO') then nop
 Else iterate
 End
 if Pos('UH',ThisWord) > 0 then Iterate
 if Pos('VD',ThisWord) > 0 then Iterate

 /* If we get to this point, we have NOT eliminated the word */
 NewWordArrayEnts = NewWordArrayEnts + 1
 NewWordArray.NewWordArrayEnts = WordArray.I
 End
 NewWordArray.0 = NewWordArrayEnts
 Say "Thinking..."
Return

/*-----------*/
/* Build the NM3Str */
/*-----------*/
Proc302:
 /* Build the NM3Str: three-character combinations that
 a (3-6 char) word cannot contain */
 NM301 = "AAA AEC AEP AES AOD "
 NM302 = "BBB BEJ BJM BLM BUJ "
 NM3031= "CCC CCH CCK CHC CHN CLC CLH CLP CRC CRH "
 NM3032= "CRK CRN CRS CRT CRW CWR "
 NM303 = NM3031||NM3032
 NM304 = "DDD DLD DLN DLR DNL DNR DRL DRN "
 NM3051= "EBJ EBM EEE "
 NM3052= "EIA EIE EIH EII EIJ EIK EIO EIQ EIU EIV EIW EIX EIY EIZ"
 NM3053= "EJB EJL EJM ELJ EMJ EVH"
 NM305 = NM3051||NM3052||NM3053
 NM306 = "FFF FKA FKE FKR FRK "
 NM3071= "GGG GHB GHC GHD GHH GHG GHH GHJ GHK GHL GHM "
 NM3072= "GHN GHP GHQ GHR GHS GHT GHV GHW GHX GHY GHZ "
 NM3073= "GRV GVR "
 NM307 = NM3071||NM3072||NM3073
 NM3081= "HCT HGH HEH HHH HIH HLP HLS HPS "
 NM3082= "HRC HRN HRS HRT HRV HSP HSR HSS HVT "
 NM308 = NM3081||NM3082
 NM309 = "III ITV IVG IVR IVT "
 NM310 = "JBL JEB JEM JJJ JLM"
 NM311 = "KKK KRC KRW KWE KWR "

Page [231]

 NM312 = "LCC LEJ LHS LLL LRN LMJ LND LUJ "
 NM313 = "MEJ MLJ MMM MUB MUJ "
 NM314 = "NNN NRC NRD NRG NRL NRU NCU"
 NM315 = "ODN OOO "
 NM316 = "PCS PLC PLH PLS PPP PRR PRS PSR "
 NM318 = "RCN RCS RFK RGV RHC RHN RRP RRR RVG RVT RWC "
 NM319 = "SCP SCT SLH SLP SLS SPC SRC SRH SSS STT "
 NM320 = "TCS TIH TPT TRC TRH TRS TRV TTT TVR "
 NM321 = "UBJ UBL UBM UCN ULB ULJ UMJ UUU "
 NM322 = "VRI VRT VTH VTR VVV "
 NM323 = "WCK WHC WHT WRC WRK WWW "
 NM324 = "XXX "
 NM325 = "YYY "
 NM326 = "ZZZ "

 NM3Str = NM301||NM302||NM303||NM304||NM305||NM306||NM307
 NM3Str = NM3Str||NM308||NM309||NM310||NM311||NM312||NM313
 NM3Str = NM3Str||NM314||NM315||NM316||NM318||NM319
 NM3Str = NM3Str||NM320||NM321||NM322||NM323||NM324||NM325||NM326
 /* Say NM3Str */
Return

/*-----------*/
/* Build the NS2Str */
/*-----------*/
Proc303:
 /* Build the NS2Str: two-character combinations that
 a (3-6 char) word cannot start with */
 NS201 = "AA AE "
 NS2021 = "BB BC BD BF BG BH BJ BK BL BM "
 NS2022 = "BN BP BQ BS BT BV BW BX BZ "
 NS202 = NS2021||NS2022
 NS203 = "CB CC CD CF CG CJ CK CM CN CP CQ CS CT CV CW CX CZ "
 NS2041 = "DB DC DD DF DG DH DJ DK DL DM "
 NS2042 = "DN DP DQ DS DT DV DW DX DZ "
 NS204 = NS2041||NS2042
 NS205 = "EH EZ "
 NS206 = "FB FC FD FF FG FH FJ FK FM FN FP FQ FS FT FV FW FX FZ "
 NS207 = "GB GC GD GF GG GJ GK GM GN GP GQ GS GT GV GW GX GY GZ "
 NS2081 = "HB HC HD HF HG HH HJ HK HL HM "
 NS2082 = "HN HP HQ HR HS HT HV HW HX HZ "
 NS208 = NS2081||NS2082
 NS209 = "IE IH II IJ IK IU IW IX IY IZ "
 NS2101 = "JB JC JD JF JG JH JJ JK JL JM "
 NS2102 = "JN JP JQ JR JS JT JV JW JX JY JZ "
 NS210 = NS2101||NS2102
 NS2111 = "KB KC KD KF KG KH KJ KK KL KM "
 NS2112 = "KP KQ KS KT KV KW KX KY KZ "
 NS211 = NS2111||NS2112
 NS2121 = "LB LC LD LF LG LH LJ LK LL LM "
 NS2122 = "LN LP LQ LR LS LT LV LW LX LZ "
 NS212 = NS2121||NS2122
 NS2131 = "MB MC MD MF MG MH MJ MK ML MM "
 NS2132 = "MN MP MQ MR MS MT MV MW MX MZ "
 NS213 = NS2131||NS2132
 NS2141 = "NB NC ND NF NG NH NJ NK NL NM "
 NS2142 = "NN NP NQ NR NS NT NV NW NX NZ "
 NS214 = NS2141||NS2142
 NS215 = "OJ OQ OZ "
 NS216 = "PB PC PD PF PG PJ PK PM PN PP PQ PS PT PV PW PX PZ "

Page [232]

 NS218 = "RB RC RD RF RG RH RJ RK RL RM RN RP RQ RR RS RT RV RW RX RZ "
 NS219 = "SB SD SF SG SJ SR SS SV SX SZ "
 NS220 = "TB TC TD TF TG TJ TK TL TM TN TP TQ TS TT TV TX TZ "
 NS221 = "UA UC UE UH UJ UO UQ UU UW UX UY UZ "
 NS2221 = "VB VC VD VF VG VH VJ VK VL VM "
 NS2222 = "VN VP VQ VR VS VT VV VW VX VZ "
 NS222 = NS2221||NS2222
 NS223 = "WB WC WD WF WG WJ WK WL WM WN WP WQ WS WT WV WW WX WZ "
 NS2241 = "XA XB XC XD XE XF XG XH XI XJ XK XL XM "
 NS2242 = "XN XO XP XQ XS XT XU XV XW XX XY XZ "
 NS224 = NS2241||NS2242
 NS2251 = "YB YC YD YF YG YH YI YJ YK YL YM "
 NS2252 = "YN YP YQ YR YS YT YU YV YW YX YY YZ "
 NS225 = NS2251||NS2252
 NS2261 = "ZB ZC ZD ZF ZG ZH ZJ ZK ZL ZM "
 NS2262 = "ZN ZP ZQ ZR ZS ZT ZU ZV ZW ZX ZY ZZ "
 NS226 = NS2261||NS2262

 NS2Str = NS201||NS202||NS203||NS204||NS205||NS206||NS207
 NS2Str = NS2Str||NS208||NS209||NS210||NS211||NS212||NS213
 NS2Str = NS2Str||NS214||NS215||NS216||NS218||NS219
 NS2Str = NS2Str||NS220||NS221||NS222||NS223||NS224||NS225||NS226
 /* Say NS2Str */
Return

/*-----------*/
/* Build the NE2Str */
/*-----------*/
Proc304:
 /* Build the NE2Str: two-character combinations that
 a (3-6 char) word cannot end with */
 NE201 = "AA AE AH AJ AQ AV "
 NE2021 = "BB BC BD BF BG BH BJ BK BL BM "
 NE2022 = "BN BP BQ BT BV BW BX BZ "
 NE202 = NE2021||NE2022
 NE203 = "CB CC CD CF CG CJ CL CM CN CP CQ CR CV CW CX CZ "
 NE2041 = "DB DC DF DG DH DJ DK DL DM "
 NE2042 = "DN DP DQ DR DT DU DV DW DX DZ "
 NE204 = NE2041||NE2042
 NE205 = "EH EJ EQ EV "
 NE206 = "FB FC FD FG FH FJ FK FL fM FN FP FQ FR FT FV FW FX FZ "
 NE207 = "GB GC GD GF GJ GK GL GM GN GP GQ GR GT GV GW GX GZ "
 NE2081 = "HB HC HD HF HG HH HJ HK HL HM "
 NE2082 = "HN HP HQ HR HT HU HV HW HX HZ "
 NE208 = NE2081||NE2082
 NE209 = "IE IH II IJ IK IW IY IZ "
 NE2101 = "JB JC JD JF JG JH JJ JK JL JM "
 NE2102 = "JN JP JQ JR JS JT JU JV JW JX JY JZ "
 NE210 = NE2101||NE2102
 NE2111 = "KB KC KD KF KG KH KJ KK KL KM "
 NE2112 = "KN KP KQ KR KT KU KV KW KX KY KZ "
 NE211 = NE2111||NE2112
 NE2121 = "LB LC LD LF LG LH LJ LK "
 NE2122 = "LN LP LQ LR LU LV LW LX LZ "
 NE212 = NE2121||NE2122
 NE2131 = "MB MC MD MF MG MH MJ MK ML "
 NE2132 = "MQ MR MV MW MX MZ "
 NE213 = NE2131||NE2132
 NE2141 = "NB NC ND NF NH NJ NL NM "
 NE2142 = "NP NQ NR NU NV NW "

Page [233]

 NE214 = NE2141||NE2142
 NE215 = "OC OJ OQ OZ "
 NE216 = "PB PC PD PF PG PJ PK PL PM PN PP PQ PU PV PW PX PZ "
 NE218 = "RC RJ RQ RV RW RX RZ "
 NE219 = "SB SD SF SG SJ SL SN SV SW SZ "
 NE220 = "TB TC TD TF TG TJ TK TL TM TN TP TQ TV TX TZ "
 NE221 = "UH UJ UO UQ UU UW UX UY UZ "
 NE2221 = "VB VC VD VF VG VH VJ VK VL VM "
 NE2222 = "VN VP VQ VR VS VT VU VV VW VX VZ "
 NE222 = NE2221||NE2222
 NE223 = "WB WC WD WF WG WJ WK WL WM WN WP WQ WV WW WX WZ "
 NE2241 = "XA XB XC XD XF XG XH XI XJ XK XL XM "
 NE2242 = "XN XO XP XQ XS XT XU XV XW XX XY XZ "
 NE224 = NE2241||NE2242
 NE2251 = "YB YC YD YF YG YH YI YJ YK YL YM "
 NE2252 = "YN YP YQ YR YT YU YV YW YX YY YZ "
 NE225 = NE2251||NE2252
 NE2261 = "ZB ZC ZD ZF ZG ZH ZJ ZK ZL ZM "
 NE2262 = "ZN ZP ZQ ZR ZS ZT ZU ZV ZW ZX ZY ZZ "
 NE226 = NE2261||NE2262

 NE2Str = NE201||NE202||NE203||NE204||NE205||NE206||NE207
 NE2Str = NE2Str||NE208||NE209||NE210||NE211||NE212||NE213
 NE2Str = NE2Str||NE214||NE215||NE216||NE218||NE219
 NE2Str = NE2Str||NE220||NE221||NE222||NE223||NE224||NE225||NE226
 /* Say NE2Str */
Return

/*-----------*/
/* Build the NS3Str */
/*-----------*/
Proc305:
 /* Build the NS3Str: three-character combinations that
 a (3-6 char) word cannot start with */
 NS3011= "ACD ACV ADC AHR AIV "
 NS3012= "AOA AOB AOC AOD AOE AOF AOG AOH AOI AOJ AOK AOL AOM "
 NS3013= "AON AOO AOP AOQ AOS AOT AOU AOV AOW AOX AOY AOZ "
 NS3014= "ASR ATR "
 NS301 = NS3011||NS3012||NS3013||NS3014
 NS302 = ""
 NS303 = "CHS CHT CTR "
 NS304 = "DIU DUI "
 NS3051= "EBL ECD ECV EIB EIC EIF EIL EIM EIN EIP EIR EIS EIT "
 NS3052= "ERH ERI ERT ERV ETI ETR ETV EUR EUT EUV EVC EVR EVT EVU "
 NS305 = NS3051||NS3052
 NS306 = ""
 NS307 = ""
 NS308 = ""
 NS3091= "ICD ICV IRH IRT IRU IRV ITR ITU "
 NS3092= "IVA IVB IVC IVD IVE IVF IVG IVH IVI IVJ IVK IVL IVM "
 NS3093= "IVN IVP IVQ IVR IVS IVT IVU IVV IVW IVX IVZ "
 NS309 = NS3091||NS3092||NS3093
 NS310 = ""
 NS311 = ""
 NS312 = "LPH "
 NS313 = ""
 NS314 = ""
 NS315 = "OGV OVG OVR "
 NS316 = "PRC "
 NS317 = ""

Page [234]

 NS318 = "RAO REU RUO RUV "
 NS319 = "SHT SPS STC STH STP "
 NS320 = "TEV THC THS TIU TIV TUE TUV "
 NS321 = "RUP URR URV UVR UTV UVT "
 NS322 = "VEH VUF VUR VUT "
 NS323 = ""
 NS324 = ""
 NS325 = ""
 NS326 = ""

 NS3Str = NS301||NS302||NS303||NS304||NS305||NS306||NS307
 NS3Str = NS3Str||NS308||NS309||NS310||NS311||NS312||NS313
 NS3Str = NS3Str||NS314||NS315||NS316||NS317||NS318||NS319
 NS3Str = NS3Str||NS320||NS321||NS322||NS323||NS324||NS325||NS326
 /* Say NS3Str */
Return

/*-----------*/
/* Build the NE3Str */
/*-----------*/
Proc306:
 /* Build the NE3Str: three-character combinations that
 a (3-6 char) word cannot end with */
 NE301 = "APR ARH ASR ASC "
 NE302 = "BJE BMU "
 NE3031= "CCU CMA CMP CPE CPR CPS CRM CRP CRU "
 NE3032= "CSH CSP CSR CST CUC CVE "
 NE303 = NE3031||NE3032
 NE304 = "DCI DDA DDI DDO DIV DLA DLO DNO DVA DVE DVI"
 NE305 = "EGN EGU EIV EPR ESC ESR ETG ETR EUV "
 NE306 = ""
 NE307 = "GEU GIV GRN GRT GRU GTU GVI"
 NE308 = "HCS HIV HRA HSC HST HTR HVE "
 NE309 = "IDD ITR ITU IUV "
 NE310 = "JMU"
 NE311 = "KCO "
 NE312 = "LDA LDO LJE LNA LNO LRA LRD LRO "
 NE313 = "MBE MBU MCA MPA MPR MRP"
 NE314 = "NDO NLA NLO NRA NRO NRT "
 NE315 = "OIV OUC "
 NE316 = "PMA PRM "
 NE317 = ""
 NE3181= "RCA RCO RCU RDO RHS RIV RMP "
 NE3182= "RNO RNT ROV RPR RRU RSC RSP RTU RUV RVI RVO "
 NE318 = NE3181||NE3182
 NE319 = "SPR SRE SRP SRT STR"
 NE320 = "TCA TCR TEV TGU TIU TIV TRN TRU TSC TSR TUI TUV TVI TVE TVU "
 NE321 = "UCO UIV UOP UPR UTI UTR UVI "
 NE322 = "VEI VEU VIG VIR VIU VOG VOR VRG VRU VTE VTI VTU VUI VUR "
 NE323 = ""
 NE324 = ""
 NE325 = ""
 NE326 = ""

 NE3Str = NE301||NE302||NE303||NE304||NE305||NE306||NE307
 NE3Str = NE3Str||NE308||NE309||NE310||NE311||NE312||NE313
 NE3Str = NE3Str||NE314||NE315||NE316||NE317||NE318||NE319
 NE3Str = NE3Str||NE320||NE321||NE322||NE323||NE324||NE325||NE326
 /* Say NE3Str */
Return

Page [235]

/*-----------*/
/* Sort the Generated Word Table */
/*-----------*/
Proc40:
 Do Until SortOK = 'Y'
 SortOK = 'Y'
 Do I = 1 to NewWordArrayEnts - 1
 NextEnt = I+1
 If NewWordArray.I > NewWordArray.NextEnt then do
 SortOK = 'N'
 TempWord = NewWordArray.I
 NewWordArray.I = NewWordArray.NextEnt
 NewWordArray.NextEnt = TempWord
 End
 End
 End
Return

/*-----------*/
/* List the Generated Word Table */
/*-----------*/
Proc50:
 WordsCounted = 0
 Do I = 1 to NewWordArrayEnts
 ThisWord = NewWordArray.I
 If LastWord = ThisWord then Iterate /* Bypass duplicates */
 LastWord = ThisWord
 WordsCounted = WordsCounted + 1
 End
 Say "I will list "WordsCounted" possible words:"

 LastWord = ""
 Do I = 1 to NewWordArrayEnts
 ThisWord = NewWordArray.I
 If LastWord = ThisWord then Iterate /* Bypass duplicates */
 LastWord = ThisWord
 Say ThisWord
 End

Return

Page [236]

LA - List TSO allocations

This Rexx exec will list the TSO allocations and write them to a dataset. It will
then edit that dataset using ISPF macro LAE (included below).

/* LA - Create a List of TSO Allocations - Rexx Exec */
/* Written by Dave Grund */

Dummy = OutTrap("output_line.","*")
"LISTA SY ST"
NumLines = OutPut_Line.0
Say NumLines "lines were created"
Dummy = OutTrap("OFF")

/* Move the line with the DDNAME above the first datasetname
 that it is concatenated to. It is currently below. */
Do I = 1 to NumLines
 Piece1 = SubStr(OutPut_Line.I,1,2)
 Piece2 = SubStr(OutPut_Line.I,3,1)
 Piece3 = SubStr(OutPut_Line.I,12,4)
 If Piece1 = ' ' & ,
 Piece2 ¬= ' ' & ,
 Piece3 = 'KEEP' then do
 J = I - 1
 SaveLine = OutPut_Line.I
 Output_Line.I = OutPut_Line.J
 Output_Line.J = SaveLine
 end
end

/* Many users have the TSO profile set to NoPrefix */
/* Account for that here. */
If SYSVAR(SYSPREF) = '' then do
 "profile prefix(" userid() ")"
 TurnPrefixBackOff = 1
end
Else
 TurnPrefixBackOff = 0

"Delete la.list"
"Allocate DD(LAList) DA(LA.List) new space(1 1) tracks",
 "LRECL(80) Block(5600) recfm(f b) RETPD(0)"

"ExecIO" OutPut_line.0 "DiskW LAList (STEM OutPut_Line. FINIS"
"Free DDNAME(LaList) DA(La.List)"

ADDRESS "ISPEXEC" "EDIT Dataset(La.List) Macro(LAE)"
ADDRESS "TSO"

If TurnPrefixBackOff = 1 then
 "Profile Noprefix"

LAE - ISPF Edit macro for LA
/* LAE - Edit macro for LA - Rexx Exec */
/* Written by Dave Grund */

ADDRESS "ISREDIT" "MACRO PROCESS"

Page [237]

ADDRESS "ISREDIT" "EXCLUDE ALL --DDNAME 1"
ADDRESS "ISREDIT" "EXCLUDE ALL ' keep' 1 "
ADDRESS "ISREDIT" "Delete ALL X"
ADDRESS "ISREDIT" "C 'KEEP' '--------------' word all 12"

Page [238]

LOTTERY - Pick Lottery Numbers

/* Lottery - Pick a Lottery Number - Rexx Exec */
/* Written by Dave Grund */
/* This program will pick a lottery number for you */

Arg Game

Call Init /* Init Program */
Call Main /* Mainline */

Exit

/*------------*/
/* Program Initialization */
/*------------*/
Init:
 If Game = "" then do
 Say "Which game do you want numbers for?"
 Say "The choices are: 1)Pick3 2)PowerBall 3)Show Me Five"
 Pull Game
 End

 If (Game = 1) | (Game = 2) | (Game = 3) then Return
 Say Game "is an invalid selection!"
 Exit

Return

/*------------*/
/* Mainline */
/*------------*/
Main:
 /* Pick 3 */
 If Game = 1 then do
 Number1 = Random(0,9)
 Number2 = Random(0,9)
 Number3 = Random(0,9)
 Say "The Pick3 numbers I have selected are:",
 Number1 Number2 Number3
 End

 /* PowerBall */
 If Game = 2 then do
 Number1 = Random(1,49)

 Number2 = Number1
 Do While Number2 = Number1
 Number2 = Random(1,49)
 End

 Number3 = Number1
 Do While (Number3 = Number1) | (Number3 = Number2)
 Number3 = Random(1,49)
 End

 Number4 = Number1
 Do While (Number4 = Number1) | (Number4 = Number2) | ,

Page [239]

 (Number4 = Number3)
 Number4 = Random(1,49)
 End

 Number5 = Number1
 Do While (Number5 = Number1) | (Number5 = Number2) | ,
 (Number5 = Number3) | (Number5 = Number4)
 Number5 = Random(1,49)
 End

 Number6 = Random(1,42)

 Say "The Powerball numbers I have selected are:",
 Number1 Number2 Number3 Number4 Number5 "PB:"Number6
 End

 /* Show Me Five */
 If Game = 3 then do
 Number1 = Random(1,30)

 Number2 = Number1
 Do While Number2 = Number1
 Number2 = Random(1,30)
 End

 Number3 = Number1
 Do While (Number3 = Number1) | (Number3 = Number2)
 Number3 = Random(1,30)
 End

 Number4 = Number1
 Do While (Number4 = Number1) | (Number4 = Number2) | ,
 (Number4 = Number3)
 Number4 = Random(1,30)
 End

 Number5 = Number1
 Do While (Number5 = Number1) | (Number5 = Number2) | ,
 (Number5 = Number3) | (Number5 = Number4)
 Number5 = Random(1,30)
 End

 Say "The Show Me Five numbers I have selected are:",
 Number1 Number2 Number3 Number4 Number5
 End

Return

Page [240]

ListDSI - List Dataset Information
/* ListDSI - List Dataset information REXX */
Arg Datasetname
RC = listdsi(datasetname)
If RC = 0 then do
 Say "Allocation was successful."
 Say "SYSADirBlk="SYSADirBlk
 Say "SYSALLOC="SYSALLOC
 Say "SYSBLKSIZE="SYSBLKSIZE
 Say "SYSCreate="SYSCreate
 Say "SYSDSorg="SYSDSOrg
 Say "SYSDSName="SYSDSName
 Say "SYSExtents="SYSExtents
 Say "SYSExDate="SySExDate
 Say "SYSKEYLEN="SYSKEYLEN
 Say "SYSLRECL="SYSLRECL
 Say "SYSMembers="SYSMembers
 Say "SYSPassword="SYSPassword
 Say "SYSPrimary="SYSPrimary
 Say "SYSRefDate="SYSRefDate
 Say "SYSRACFA="SYSRACFA
 Say "SYSRECFM="SYSRECFM
 Say "SYSSeconds="SYSSeconds
 Say "SYSTrksCyl="SYSTrksCyl
 Say "SYSUnit="SYSUnit
 Say "SYSUnits="SYSUnits
 Say "SYSUpdated="SYSUpdated
 Say "SYSUSED="SYSUSED
 Say "SYSVolume="SYSVolume
End
Else do
 Say "Return code = " RC
 Say "SYSReason="SYSReason
 Say "SYSMSGLVL1="SYSMsgLvl1
 Say "SYSMSGLVL2="SYSMsgLvl2
End

Page [241]

LPDSIX - List a PDS Index to a Sequential File

This command will list the members of a PDS out to a sequential dataset for
subsequent editing.

/* LPDSIX - List a PDS Index to a Sequential File */
/* Written by Dave Grund */
Arg PDSName
Call Proc01 /* Program Initialization */
Call Proc02 /* List Members to an array */
Call Proc03 /* Create the sequential file array */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say "LPDSIX - List a PDS Index to Sequential File"
 Say "Proceeding..."

 If PDSName = '' then do
 Say "PDSName not specified"
 Exit(16)
 End

 Prefix = sysvar(SYSUID)

 /* Say "The datasetname is " PDSName */
Return

/*------------*/
/* List Members to an array */
/*------------*/
Proc02:
 TmStart = Time(S)
 Say "Listing "PDSName" Members..."
 Dummy = OutTrap("Members.","*")
 "LISTD "PDSName" M "
 Dummy = OutTrap("OFF")
 NumMembers = Members.0
 If NumMembers < 2 then do
 Say "No members found: problem?"
 Exit(16)
 End
 AdjMembers = NumMembers - 6 /* Don't count the first six blanks */
 Say AdjMembers PDSName "names were found"
 TmEnd = Time(S)
 TmDur = TmEnd - TmStart
 Say "That took " TmDur "seconds!"
Return

/*------------*/
/* Create the sequential file array */
/*------------*/

Page [242]

Proc03:
 Do I = 1 to NumMembers
 Members.I = strip(Members.I)
 OrigMemname = left(Members.I,8)
 End

 OPDSN = "LPDSIX.Work"
 Dummy = OutTrap("Junk.","*")
 /* Allocate the sequential output file */
 Address TSO
 "Delete " OPDSN
 "Free FI(SeqFil)"
 Dummy = OutTrap("OFF")
 "ALLOC F(SeqFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",
 "SPACE(45 45) Tracks LRECL(88) BLKSIZE(6160) RECFM(F,B)"

 'EXECIO' NumMembers 'DISKW SeqFil (STEM Members. FINIS'
 "Free FI(SeqFil)"
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say OPDSN "created. LPDSIX complete :)"
Return

Page [243]

PROCSYMS - Perform Symbolic Substitution

/* ProcSyms - ISPF Edit Macro REXX EXEC */
/* Written by Dave Grund */

/* This macro is used to perform symbolic substitution on a set of */
/* JCL that calls a proc. */

/* 1) Put all symbolics from the PROC statement into an array */
/* 2) For testing, list the array */
/* 3) Copy the array to a change command array */
/* 4) Execute the change command array */
Address "ISREDIT" "MACRO PROCESS"
Address "ISREDIT"
Call Proc01 /* Put Symbs and Vals => arrays*/
Call Proc02 /* List the arrays */
Call Proc03 /* Create the change arrays */
/* l Proc04 */ /* List the change arrays */
Call Proc05 /* Execute the changes */
Exit

/*-----------*/
/* Proc01 - Put all the symbolics and values from the PROC statement */
/* into arrays. */
/*-----------*/
Proc01:
 Address "ISREDIT"
 "Exclude All '//*' 1"
 "Find ' PROC ' All NX"
 "ISREdit (NumFnd,Junk) = Find_Counts"

 If NumFnd = 0 then do
 zedsmsg = "'Not a PROC"
 zedlmsg = "I did not find a PROC statement in this member"
 Address ISPExec
 "SETMSG MSG(ISRZ000)"
 Exit
 End

 If NumFnd > 1 then do
 zedsmsg = "Too many"
 zedlmsg = "I found "NumFnd" PROC statements.",
 "I don't know how to process more than one."
 Address ISPExec
 "SETMSG MSG(ISRZ000)"
 Exit
 End

 /* At this point, we are looking at a line with the word 'PROC' */
 ProcLine = 'Y' /* This is the PROC line */
 "(CurrLine) = LINE .ZCSR" /* Read the line that the cursor is on */
 CurrLine = left(CurrLIne,72) /* Drop off the sequence number*/
 'ISREDIT (CLineNo,x) = CURSOR' /* save cursor position */
 Say "The input line is "CurrLine

 SymArray.0 = 0 ; ValArray.0 = 0 /* Init Sym and Value arrays */
 NextEnt = 0 /* Next array entry number */
 StillIn = 'Y' /* Set continue processing sw */

Page [244]

 Do while StillIn = 'Y'
 /* Parse the line into operands */
 Parse var CurrLine Operand1 Operand2 Operand3 Operand4
 Say " Operand 1="Operand1
 Say " Operand 2="Operand2
 Say " Operand 3="Operand3
 Say " Operand 4="Operand4

 If ProcLine = 'Y' then do /* If this is the 'PROC' line, */
 Params = Operand3 /* Params are operand 3 */
 ProcLine = 'N'
 End
 Else
 Params = Operand2 /* Params are operand 2 */
 Params = strip(Params)

 If right(Params,1) = ',' then do /* end in comma? */
 LastLine = 'N' /* Off ind: this is not last */
 Params = left(Params,length(Params)-1) /* Remove the comma */
 End
 Else
 LastLine = 'Y' /* Set indicator */

 Do while length(Params) > 0
 Call Proc011 /* Get the next Parameter */
 End
 If LastLine = 'Y' then /* If this is the last line, */
 StillIn = 'N' /* we are done */
 Else do /* otherwise */
 CLineNo = CLineNo + 1 /* Bump line number */
 "(CurrLine) = LINE "ClineNo /* Read the next line down */
 CurrLine = left(CurrLIne,72) /* Drop off the seq number */
 End
 End
Return

/*-----------*/
/* Get the Next Symbolic Parameter and Value */
/*-----------*/
Proc011:
 /* First handle the Symbolic */
 Pos = Index(Params,'=') /* Point to the equals sign */
 If Pos = 0 then do /* No more params on this line */
 Params = "" /* Reduce the line to nothing */
 Return
 End
 ThisSym = left(Params,Pos-1)
 /* Say "Trace: ThisSym="ThisSym */
 NextEnt = NextEnt + 1
 SymArray.NextEnt = ThisSym
 SymArray.0 = NextEnt
 Params = DelStr(Params,1,length(ThisSym)+1)
 /* Say "The remainder of the line is" Params */

 /* Now handle the value */
 Params = Params||" " /* Add a space, just in case */
 If left(Params,1) = "'" then do /* Delimiter is an apostrophe */
 Params = Delstr(Params,1,1) /* Delete the first one */
 EndPos = Index(Params,"'")

Page [245]

 If EndPos = 0 then do
 Say "Problem! No second apostrophe found; line=" Params
 Exit
 End
 Params = Delstr(Params,EndPos,1) /* Delete the second one */
 End
 Else do
 EndPos = Index(Params,",")
 If EndPos = 0 then EndPos = Index(Params," ")
 If EndPos = 0 then do
 Say "Problem! Data line is corrupted; line="Params
 Say " Length of Params="length(Params)
 Exit
 End
 End
 ThisVal = substr(Params,1,EndPos-1)
 /* Say "ThisVal="ThisVal */
 Params = DelStr(Params,1,length(ThisVal)+1)
 ValArray.NextEnt = ThisVal
 ValArray.0 = NextEnt
 Params = strip(Params)
Return

/*-----------*/
/* Proc02 - List the arrays */
/*-----------*/
Proc02:
 Say "Symbolic|Value"
 Do I = 1 to SymArray.0
 ThisStr = left(SymArray.I||" ",8)
 ThisStr = ThisStr||" "
 ThisStr = ThisStr||ValArray.I
 Say ThisStr
 End
Return

/*-----------*/
/* Proc03 - Create the change arrays */
/*-----------*/
Proc03:
 ChgArray1.0 = 0 ; ChgArray2.0 = 0;
 Do I = 1 to SymArray.0
 /* Symbolics with the '.' */
 ChgArray1.I = "Change '&&&&"SymArray.I".' '"ValArray.I"' all"
 /* Symbolics without the '.' */
 ChgArray2.I = "Change '&&&&"SymArray.I"' '"ValArray.I"' all word"
 End
 ChgArray1.0 = SymArray.0 ; ChgArray2.0 = SymArray.0
Return

/*-----------*/
/* Proc04 - List the Change Arrays */
/*-----------*/
Proc04:
 Do I = 1 to ChgArray1.0
 Say ChgArray1.I
 End
 Do I = 1 to ChgArray2.0
 Say ChgArray2.I
 End

Page [246]

Return

/*-----------*/
/* Proc05 - Execute the Change Arrays */
/*-----------*/
Proc05:
 Address "ISREDIT"
 Do I = 1 to ChgArray1.0
 ChgArray1.I
 ChgArray2.I
 End
 address "ISREDIT" "LINE_AFTER 0 = NoteLine",
 "'--'"
 address "ISREDIT" "LINE_AFTER 0 = NoteLine",
 "'" Symbolic substitution performed ISPF macro ProcSyms."'"
 address "ISREDIT" "LINE_AFTER 0 = NoteLine",
 "'--'"
 "Up Max"
Return

Page [247]

PTS - PDS-to-Sequential; member name is prefix

This exec will "flatten out" a PDS, adding the member name to the front of each
line. The result is written to a dataset for subsequent modification.

/* PTS - Copy a PDS to a sequential file, adding the */
/* member name to the first 8 positions */
/* Written by Dave Grund */
Arg PDSName
Call Proc01 /* Program Initialization */
Call Proc02 /* List Members to an array */
Call Proc03 /* Create the sequential file array */
Call Proc04 /* Write the array to a dataset */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say "PTS - Copy PDS to Sequential"
 Say "Proceeding..."

 If PDSName = '' then do
 Say "PDSName not specified"
 Exit(16)
 End

 Prefix = sysvar(SYSPREF)
 If Prefix = "" then
 Prefix = sysvar(SYSUID)

 /* Follow TSO conventions. If the PDSName has quotes remove them.
 If not, add the userid to the front */
 If Left(PDSName,1) = "'" then do
 OurLen = length(PDSName) - 2
 PDSName = substr(PDSName,2,OurLen)
 End
 Else
 PDSName = Prefix||"."||PDSName
 /* Say "The datasetname is " PDSName */
Return

/*------------*/
/* List Members to an array */
/*------------*/
Proc02:
 Say "Listing "PDSName" Members..."
 Dummy = OutTrap("Members.","*")
 "LISTD '"PDSName"' M "
 Dummy = OutTrap("OFF")
 NumMembers = Members.0
 If NumMembers < 2 then do
 Say "No members found: problem?"
 Exit(16)

Page [248]

 End
 AdjMembers = NumMembers - 6 /* Don't count the first six blanks */
 Say AdjMembers PDSName "names were found"
Return

/*------------*/
/* Create the sequential file array */
/*------------*/
Proc03:
 SeqFileNumLines = 0
 Do I = 7 to NumMembers
 Members.I = strip(Members.I)
 OrigMemname = left(Members.I,8)
 Memname = strip(OrigMemName)
 InputDSN = "'"PDSName"("Memname")'"
 /* Say "InputDSN=" InputDSN */
 Address TSO
 "ALLOC DA("InputDSN") F(INDD) SHR REUSE"
 'EXECIO * DISKR INDD (STEM REC. FINIS'
 'FREE F(INDD)'
 ThisMemNumLines = REC.0
 /* Say "Member contains" ThisMemNumLines" lines" */

 Do J = 1 to ThisMemNumLines
 ThisLine = OrigMemName || Rec.J
 SeqFileNumLines = SeqFileNumLines + 1
 SeqArray.SeqFileNumLines = ThisLine
 End
 End
 /* Say 'The sequential file array contains' SeqFileNumLines' lines'*/
Return

/*------------*/
/* Write the array to a dataset */
/*------------*/
Proc04:
 OPDSN = "'"Prefix||"."||PTS.Work"'"
 Dummy = OutTrap("Junk.","*")
 /* Allocate the sequential output file */
 Address TSO
 "Delete " OPDSN
 "Free FI(SeqFil)"
 Dummy = OutTrap("OFF")
 "ALLOC F(SeqFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",
 "SPACE(45 45) Tracks LRECL(88) BLKSIZE(6160) RECFM(F,B)"

 /* Now write the array to the sequential output file */
 'EXECIO' SeqFileNumLines 'DISKW SeqFil (STEM SeqArray. FINIS'
 "Free FI(SeqFil)"
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say OPDSN "created. PTS complete :)"
Return

Page [249]

PTS2 - PDS-to-Sequential; member name is inserted

This exec will "flatten out" a PDS, inserting a line with the member name between
each member. The result is written to a dataset for subsequent modification.

/* PTS2 - Copy a PDS to a sequential file, adding the */
/* member name between members */
/* Written by Dave Grund */
Arg PDSName
Call Proc01 /* Program Initialization */
Call Proc02 /* List Members to an array */
Call Proc03 /* Create the sequential file array */
Call Proc04 /* Write the array to a dataset */
Call Proc99 /* Finalization */
Exit

/*--*/
/* Called Procedures */
/*--*/
/*------------*/
/* Program Initialization */
/*------------*/
Proc01:
 Say "PTS2 - Copy PDS to Sequential"
 Say "Proceeding..."

 If PDSName = '' then do
 Say "PDSName not specified"
 Exit(16)
 End

 Prefix = sysvar(SYSPREF)
 If Prefix = "" then
 Prefix = sysvar(SYSUID)

 /* Follow TSO conventions. If the PDSName has quotes remove them.
 If not, add the userid to the front */
 If Left(PDSName,1) = "'" then do
 OurLen = length(PDSName) - 2
 PDSName = substr(PDSName,2,OurLen)
 End
 Else
 PDSName = Prefix||"."||PDSName
 /* Say "The datasetname is " PDSName */
Return

/*------------*/
/* List Members to an array */
/*------------*/
Proc02:
 Say "Listing "PDSName" Members..."
 Dummy = OutTrap("Members.","*")
 "LISTD '"PDSName"' M "
 Dummy = OutTrap("OFF")
 NumMembers = Members.0
 If NumMembers < 2 then do
 Say "No members found: problem?"
 Exit(16)

Page [250]

 End
 AdjMembers = NumMembers - 6 /* Don't count the first six blanks */
 Say AdjMembers PDSName "names were found"
Return

/*------------*/
/* Create the sequential file array */
/*------------*/
Proc03:
 SeqFileNumLines = 0
 Do I = 7 to NumMembers
 Members.I = strip(Members.I)
 OrigMemname = left(Members.I,8)
 Memname = strip(OrigMemName)
 InputDSN = "'"PDSName"("Memname")'"
 /* Say "InputDSN=" InputDSN */
 Address TSO
 "ALLOC DA("InputDSN") F(INDD) SHR REUSE"
 'EXECIO * DISKR INDD (STEM REC. FINIS'
 'FREE F(INDD)'
 ThisMemNumLines = REC.0
 /* Say "Member contains" ThisMemNumLines" lines" */

 /* First write a record containing the member name */
 SeqFileNumLines = SeqFileNumLines + 1
 SeqArray.SeqFileNumLines = "== " || OrigMemName || " =="

 Do J = 1 to ThisMemNumLines
 ThisLine = Rec.J
 SeqFileNumLines = SeqFileNumLines + 1
 SeqArray.SeqFileNumLines = ThisLine
 End
 End
 /* Say 'The sequential file array contains' SeqFileNumLines' lines'*/
Return

/*------------*/
/* Write the array to a dataset */
/*------------*/
Proc04:
 OPDSN = "'"Prefix||"."||PTS2.Work"'"
 Dummy = OutTrap("Junk.","*")
 /* Allocate the sequential output file */
 Address TSO
 "Delete " OPDSN
 "Free FI(SeqFil)"
 Dummy = OutTrap("OFF")
 "ALLOC F(SeqFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",
 "SPACE(45 45) Tracks LRECL(80) BLKSIZE(6160) RECFM(F,B)"

 /* Now write the array to the sequential output file */
 'EXECIO' SeqFileNumLines 'DISKW SeqFil (STEM SeqArray. FINIS'
 "Free FI(SeqFil)"
Return

/*------------*/
/* Finalization */
/*------------*/
Proc99:
 Say OPDSN "created. PTS2 complete :)"

Page [251]

Return

Page [252]

RexxModl - Rexx Exec Model

Every toolbox should have a model from which to create a new program, be it
bare-bones, or chock-full of routines to weed through. Here is the former.

/* PgmID - Program Function - Rexx Exec */
/* Written by . . . */
/* This program will... */

Arg Spec

Call Init /* Init Program */

Exit

/*------------*/
/* Program Initialization */
/*------------*/
Init:

Return

Page [253]

Scale - Display a Scale

This is a code snippet that is handy for lining things up, when necessary.

Say ' 1 2 3 4 5 6'
Say '....5....0....5....0....5....0....5....0....5....0....5....0'

Page [254]

SDN - Sorted Directory w/Notes: directory annotator

This is a handy ISPF macro that I wrote to keep track of what I have in my PDS's.
This command will create and maintain a member called "@LIST", which contains a one-
liner about each member in the PDS. Hopefully, this member will always be the first in a
PDS.

Unfortunately, this command can be invoked only while you are editing a member
of the PDS that you wish to annotate.

/* SDN - REXX EXEC */
/* Sorted Directory w/Notes - Edit Macro */
/* Written by Dave Grund */
/* Changed 7/27/95- restore the TSO Profile prefix before ISPF */
/* edit is invoked, instead of after the command is complete */

ADDRESS "ISREDIT" "MACRO PROCESS"

/*---*/
/* Initialization */
/*---*/
/* It's almost impossible to effectively handle datasetnames while */
/* the TSO Profile Prefix is set to on. */
PREFIX = SYSVAR(SYSPREF) /* Get the Prefix */
If PREFIX = "" then DO /* prefix is not set */
 PrefixOn = 0 /* Set a switch for later */
end
else Do
 PrefixOn = 1 /* Set a switch for later */
 ADDRESS TSO
 "Profile NoPrefix" /* Turn the prefix off */
end

/*---*/
/* 1) Read @LIST from current pds */
/*---*/
Address "ISREDIT" "(XDSN)=DATASET"
Dummy = ListDsi(XDSN)
If SYSDSORG ¬= "PO" then do
 Say "This dataset is not a PDS. No action performed."
 Exit
end
IPDSN = "'"XDSN"(@LIST)'"
If SYSdsn(IPDSN) = "OK" then
 nop = nop
 /* Say "The dsn is "IPDSN */
else do /* Create @List with one member */
 "NewStack"
 "Allocate DD(FileA) DA("IPDSN") shr"
 ARec = "@LIST This member"
 Push ARec
 "ExecIO 1 DiskW FileA "
 "ExecIO 0 DiskW FileA (Finis" /* Close the output file */
 "Free DDNAME(FileA)"
end

/* "Free FI(OldFile)" */

Page [255]

"Allocate FI(OldFile) DA("IPDSN") shr"

"ExecIO * DiskR OldFile (STEM FileARec. FINIS"
"Free FI(OldFile)"
/* Say FileARec.0 "Records read into the FileARec array" */

/*---*/
/* 2) Get member list of current PDS */
/*---*/
Dummy = OutTrap("FileBRec.","*")
"LISTD " IPDSN " M"
Dummy = OutTrap("OFF")
/* Say FileBRec.0 "Records read into the FileBRec array" */

/* ListD has a problem when run from within a REXX EXEC. */
/* It spits out two or three lines that it doesn't write when */
/* running from outside of an EXEC. These lines start with the */
/* string "--MEMBER--". Find out where our list really starts, */
/* and save that record number for use later. */
FileBPos = 0 /* Initialize this value */
Do I = 1 to 15
 If SubStr(FileBRec.I,1,11) = "--MEMBERS--" then do
 FileBPos = I + 1
 Signal Done2
 end
 /* Say I FileBRec.I */
end
Done2: Nop=nop
If FileBPos = 0 then do
 Say "Problem with SDN EXEC at POINT 1"
 Exit(0)
end

/*---*/
/* 3) Compare, and create the new @List */
/*---*/
OPDSN = "'"XDSN"(@LIST)'"
"NewStack"
"Allocate DD(FileC) DA("OPDSN") shr"
FileAPos = 1
/* FileBPos is set in section 2 above */
FileCPos = 1

GetBoth:
/* Get a record from File A */
If FileAPos > FileARec.0 then
 FileAKey = '99999999'
Else Do
 FileAKey = SubStr(FileARec.FileAPos,1,8)
 ARec = SubStr(FileARec.FileAPos,1,72)
 FileAPos = FileAPos + 1
end
/* Say "The first record from FileA is: " ARec */

/* Get a record from File B */
If FileBPos > FileBRec.0 then
 FileBKey = '99999999'
Else Do
 FileBKey = SubStr(FileBRec.FileBPos,3,10)
 BRec = SubStr(FileBRec.FileBPos,3,72)

Page [256]

 FileBPos = FileBPos + 1
END
/* Say "The first record from FileB is: " BRec */

Compare:
If FileAKey < FileBKey then signal ALow
If FileBKey < FileAKey then signal BLow
/* Say "The record being compared is " FileAKey FileBKey */

/* Member names are the same */
If FileAKey = "99999999" then /* Both files are at end-of-file */
 signal EOF
CRec = SubStr(ARec,1,9)" "Substr(ARec,11,70)
/* Say "The record going out is " Crec */
Push CRec
"ExecIO 1 DiskW FileC "
Signal GetBoth

ALow:
CRec = SubStr(ARec,1,9)"-"Substr(ARec,11,70)
Push CRec
"ExecIO 1 DiskW FileC "
/* Get a record from File A */
If FileAPos > FileARec.0 then
 FileAKey = '99999999'
Else Do
 FileAKey = SubStr(FileARec.FileAPos,1,8)
 ARec = SubStr(FileARec.FileAPos,1,72)
 FileAPos = FileAPos + 1
end
Signal Compare

BLow:
CRec = SubStr(BRec,1,9)"+"Substr(BRec,11,70)
Push CRec
"ExecIO 1 DiskW FileC "
/* Get a record from File B */
If FileBPos > FileBRec.0 then
 FileBKey = '99999999'
Else Do
 FileBKey = SubStr(FileBRec.FileBPos,3,10)
 BRec = SubStr(FileBRec.FileBPos,3,72)
 FileBPos = FileBPos + 1
END
Signal Compare

EOF:
"ExecIO 0 DiskW FileC (Finis" /* Close the output file */
"Free DDNAME(FileC)"

/* If the TSO Profile Prefix was set to on when we came in, restore */
/* it. */
If PrefixOn = 1 then do /* We came in with the setting */
 ADDRESS TSO
 "Profile Prefix("PREFIX")" /* Restore it */
end

ADDRESS "ISPEXEC" "EDIT Dataset("OPDSN") "

Page [257]

SHOWDUPS - Show Duplicates

This exec is an ISPF macro that will show all duplicated lines in a dataset.

/* ShowDups - Show Duplicate Lines - REXX Exec */
/* Written by Dave Grund */
ADDRESS ISREDIT
'MACRO (begcol endcol)'
If Begcol = '?' then do
 zedsmsg = 'ShowDup begcol,endcol'
 zedlmsg = 'Command syntax: ShowDup beginning col, ending col'
 signal quitme
end
numcheck = DATATYPE(begcol,N) /* Determine if any parms have */
If NumCheck /= 1 then BegCol = 1 /* been passed. */
numcheck = DATATYPE(endcol,N)
If NumCheck /= 1 then 'ISREDIT (endcol) = LRECL'

'ISREDIT (currline) = LINENUM .ZFIRST' /* save starting record # */
'ISREDIT (lastline) = LINENUM .ZLAST' /* save ending record # */
'ISREDIT (cl,cc) = CURSOR' /* save cursor position */
DupCnt = 0
'ISREDIT EXCLUDE ALL'
Do currline = 1 to lastline - 1
 'ISREDIT (line1) = LINE' currline
 line1 = substr(line1,begcol,(endcol - begcol) + 1)
 nextline = currline + 1
 'ISREDIT (line2) = LINE' nextline /* get next record */
 line2 = substr(line2,begcol,(endcol - begcol) + 1)
 If line1 == line2 then do
 DupCnt = DupCnt + 1
 "ISREDIT LABEL " currline " = .A"
 "ISREDIT LABEL " nextline " = .B"
 "ISREDIT RESET EXCLUDED .A .B"
 end
end
zedsmsg = DupCnt 'DUPS FOUND'
zedlmsg = DupCnt 'duplicate lines were detected'
Quitme:
ADDRESS ISPEXEC
'SETMSG MSG(ISRZ000)'
EXIT 0

Page [258]

Stack - Start another ISPF session

This is a handy Rexx exec that, while you are in an ISPF session, will start another
one. The action is totally recursive.

/* Stack - Start Another ISPF Session - Rexx Exec */
/* Written by Dave Grund */
/* This program will start another ISPF session so you don't have to
 back out of everything you have when you want another window. */

Address ISPExec
"Select Panel(ISR@Prim)"

Page [259]

TimeFmts - Show all time formats

/* TimeFmts - Time Formats - Rexx EXEC */
/* Written by Dave Grund */

 Say "Date()" Date()
 Say "Date(B)" Date(B)
 Say "Date(C)" Date(C)
 Say "Date(D)" Date(D)
 Say "Date(E)" Date(E)
 Say "Date(J)" Date(J)
 Say "Date(M)" Date(M)
 Say "Date(O)" Date(O)
 Say "Date(S)" Date(S)
 Say "Date(U)" Date(U)
 Say "Date(W)" Date(W)

 Say "Time()" Time()
 Say "Time(C)" Time(C)
 Say "Time(H)" Time(H)
 Say "Time(L)" Time(L)
 Say "Time(M)" Time(M)
 Say "Time(N)" Time(N)
 Say "Time(R)" Time(R)
 Say "Time(S)" Time(S)

Page [260]

TimeToGo - Display time until an event

This exec can be used to display how much time remains until a certin event. This
can be pretty informative and useful on a Friday afternoon at about 2:00.

/* TimeToGo - Rexx EXEC */
/* Written by Dave Grund */
/* This is a Rexx learning exercise. Its purpose is to */
/* calculate how much time remains to a specific event */

TargetHH = 16 /* Set these to the */
TargetMM = 00 /* event */
TargetSS = 00 /* time */
TargetSeconds = (TargetHH * 60 * 60) + (TargetMM * 60) + TargetSS

TimeNow = Time(N)
TimeNowHH = left(TimeNow,2)
TimeNowMM = substr(TimeNow,4,2)
TimeNowSS = right(TimeNow,2)
SecondsNow = (TimeNowHH * 60 * 60) + (TimeNowMM * 60) + TimeNowSS

SecondsLeft = TargetSeconds - SecondsNow
/* Say "SecondsLeft = " SecondsLeft */

TimeToGoHH = trunc(SecondsLeft / 3600)
SecondsLeft = SecondsLeft - (TimeToGoHH * 3600)

TimeToGoMM = trunc(SecondsLeft / 60)
SecondsLeft = SecondsLeft - (TimeToGoMM * 60)
TimeToGoSS = SecondsLeft

/* Now format the time so we don't get something like 7:7:4 */
If TimeToGoSS < 10 then
 TimeToGoSS = '0' || TimeToGoSS
If TimeToGoMM < 10 then
 TimeToGoMM = '0' || TimeToGoMM

If TimeToGoHH > 0 then
 Say "Time to Go: "TimeToGoHH":"TimeToGoMM":"TimeToGoSS
Else
 Say "Time to Go: "TimeToGoMM":"TimeToGoSS

Page [261]

Section IV - The Rexx Environment

Page [262]

This section of the manual describes the following Rexx features:

1. Establishing your Rexx environment

2. Using Rexx with ISPF

3. Using Rexx in the background (batch jobs)

4. Debugging your Rexx program

5. Trapping Errors

6. Examples

Page [263]

Establishing your Rexx environment

This procedure has gone through several variations.

Previously, you had to research to see what was currently allocated to SYSPROC
(for Clists) or SYSEXEC (for Rexx execs). Then you had to free the DDName, allocate
your exec library to SYSPROC, and then reallocate all of the system libraries that were
previously allocated to it. The problem with this was that if the system administrators
responsible for the concatenation of your procedure libraries changed the list of files
allocated to that DDName, you would not have that new list available to you.

Some shops started to write their logon procedures so you could pass it the name
of a library that you wanted to allocate in front of (or in back of) the list of system exec or
clist libraries. There was a lot of room for error in this method.

IBM has supplied us with a solution to this dilemna. It is called ALTLIB.

Now, to establish your own personal Rexx exec library (a library from which all of
your execs will be called), perform the following steps:
• Create a PDSE whose last level is EXEC.
You can create a PDSE through ISPF 3.2, then option M. You can also use the following
command:
Address TSO
"Free Fi(NEWDA)"
"delete REXX.EXEC"
"Alloc Fi(NEWDA) DA(REXX.EXEC) new space(15 1) dir(1) track" ,
 "DSNType(Library)" ,
 "dsorg(PO) recfm(F b) lrecl(80) blksize(0)"
"Free Fi(NEWDA)"

• Populate that PDSE with your execs

Then, whenever you log on to TSO,
• Allocate DDName SYSUEXEC to that newly-created library
"Alloc Fi(SYSUEXEC) DA(REXX.EXEC) SHR"

• Issue the ALTLIB command.
"ALTLIB Activate User(exec)"

Page [264]

Using Rexx with ISPF

You can invoke the ISPF editor or browser from within a Rexx exec. Furthermore,
you can run a Rexx exec upon beginning the edit of a dataset. This feature is called an
ISPF edit macro.

ISPF Browser
To browse a dataset from within a Rexx exec:

ADDRESS "ISPEXEC" "BROWSE Dataset(dsn)"

where
dsn is the datasetname of the file you wish to browse

ISPF Editor
To edit a dataset from within a Rexx exec:

ADDRESS "ISPEXEC" "EDIT Dataset(dsn) Macro(macname)"

where
dsn is the datasetname of the file you wish to edit
macname is the name of the ISPF Rexx exec that will function as the ISPF
macro.

ISPF Edit Macros
The purpose of an ISPF edit macro is to perform one or more ISPF edit commands

on a dataset immediately after opening it for edit. If you need to do something to a dataset
after it is opened for edit, an edit macro may be the way to accomplish this.

A complete dissertation of ISPF edit macros is beyond the scope of this book, but
I provide enough to at least let you know how they are used in conjunction with Rexx.

An ISPF edit macro can be used to reformat or restructure data in a dataset prior
to the dataset being presented to the user for editing.

The first line in an ISPF macro is one to tell the Rexx exec that it is to function as
an ISPF macro:

Address "ISREDIT" "Macro Process".

Just about any ISPF editor primary command can be used in an ISPF macro.
Simply precede the command with Address "ISREDIT".

This is an example of an ISPF macro that is used to edit the output of the TSO
command LISTA SY ST (see the "LA" exec in the examples):

/* REXX - LAE - Edit macro for LA - Rexx Exec */
/* Written by Dave Grund, April 7, 1995 */

1 ADDRESS "ISREDIT" "MACRO PROCESS"
2 ADDRESS "ISREDIT" "EXCLUDE ALL --DDNAME 1"

Page [265]

3 ADDRESS "ISREDIT" "EXCLUDE ALL ' keep' 1 "
4 ADDRESS "ISREDIT" "Delete ALL X"
5 ADDRESS "ISREDIT" "C 'KEEP' '--------------' word all 12"

Line 1 tells the Exec that it is an ISPF macro.

Line 2 is an ISPF command that excludes all lines where "--DDNAME" appears in column
1.

Line 3 is an ISPF command that does the same thing with a different character string.

Line 4 tells ISPF to delete all excluded lines (those that were excluded by the previous two
lines)

Line 5 tells ISPF to change the all occurrences of the string "KEEP" that start in column
12 to 14 dashes.

Page [266]

Using Rexx in the background (batch jobs)

As long as your Rexx exec is not interactive, you should have no problem running
it in the background, that is, via a job you submit from your terminal.

A good candidate for a Rexx exec that should run in the background is one that
will take a lot of CPU time, or produce a lot of output. By running it in the background,
you can free up your terminal to do other things.

Instead of allocating files from within your Rexx exec, you would allocate them via
the JCL. You could keep the allocations buried within your Rexx exec, but then you will
be hiding the datasetname from your user. Unless this is what you specifically want to do,
put the DD statement for that file in the JCL, and remove the allocate step from your Rexx
exec.

An example of JCL for running a Rexx exec in the background is shown:
1 //STEP010 EXEC PGM=IKJEFT01
2 //SYSTSPRT DD SYSOUT=*
3 //SYSTSIN DD *
4 EXEC 'GRUNDDAV.REXX.EXEC(TEST1)'
5 /*

Note that this JCL can be used for executing any TSO command, not just Rexx execs.
Line 1 executes program IKJEFT01, which is the background TSO command processor.
Line 2 allocates the TSO SYSOUT dataset.
Line 3 allocates the TSO SYSIN dataset
Line 4 executes the TSO command. In this case, it's an exec from my exec PDS.
(Line 5 is simply the JES end-of-data statement.)

Page [267]

Debugging your Rexx program

If your program operates in a manner that doesn't seem quite right, and the cause
is not immediately evident, it is probably time to go into debugging mode. Debugging is
the process of putting code into your program to make your program tell you where it is,
what it is about to do, or what it has done.

Typically, you would not leave any "active" debugging code in your production
program. Instead of deleting it, you could comment it out, but if there is too much, it
could detract from the readability of the program.

There are several ways to debug a Rexx exec.

One way is to put "Say" statements in strategic locations. This will tell you what
paths the program is taking. Along this same line is commenting out instructions that you
suspect to be causing the problems.

Another way is to use the Rexx Trace facilities.

I have always used the first method, because it is simpler, easier to "unplug", and
gave me the same end result. The second method can hammer you with output that can
serve more to confuse you than to help you. And to top it off, I think the Rexx Trace
facilities are a little complicated. But it still warrants a short discussion, so here it is.

To interrupt your Rexx program from running, press the ATTN, or PA1 key. The
program will break out of its current processing, and if there is code left to execute, the
following will be displayed:
ENTER HI TO END, A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND+ -

You have several options for a response:
1) Enter key- The program will continue running
2) HI (Halt Interpret)- The program will end.
3) HT (Halt Typing)- The program will stop displaying output.
4) RT (Resume Typing)- The program will resume displaying output
5) TS (Trace Start)- Rexx will enter Interactive Trace Mode
6) TE (Trace End)- Rexx will exit Interactive Trace Mode

Interactive Trace Mode
Interactive Trace Mode is where Rexx will display each of the lines as it executes

them, prefixed by the line numbers. When it pauses for input, you can change the value of
a variable, or hit Enter to continue processing.

Page [268]

Trapping Errors

Trapping Errors is the process of detecting certain program conditions, and then
acting based on those conditions.

This facility may be used in debugging, but can also be used in a production
program (but carefully).

Error-trapping instructions:
Signal On condition
Signal Off condition
Call On condition Name subroutinename

Signal On condition
This instruction will effect a transfer of control to a designated location in the

program whenever a certain condition is detected by the program. After the condition is
handled, the program terminates.

Signal Off condition
This instruction will cancel the effects of a Signal On for this particular condition

only.

Call On condition Name subroutinename
This instruction will cause the program to perform a call to subroutine every time

the program detects a certain condition. After the condition is handled, the subroutine
returns control to the next sequential instruction iun the program. The subroutine cannot
return any values.

Naming a subroutine is optional.

Condition
The condition cited in the above instructions can be one of the following:

1. Syntax- Rexx encountered a syntax error in an instruction.
2. Error - A TSO or ISPF command returned a non-zero return code
3. Failure- A command that was passed to the environment has failed
4. NoValue- A variable was never given a value. Typically, this is not an error, because
Rexx, by default, treats an unassigned variable as a literal.
5. Halt- The PA1/Attn key was hit.

Page [269]

Examples
The following Rexx exec will be used in each of the examples. For each example, the
"Main processing" section of the program will be different.

/* Rexx program to demonstrate error-trapping */
Signal On Syntax
Call On Error Name Error_Handler
Call On Failure
Signal On NoValue
Signal On Halt

(Main processing section)

Exit

Type:

Syntax:
 Say "I am in the Syntax condition-handling routine now."
 Say "I am going to terminate the program because of this"
Exit

Error_Handler:
 Say "I am in the Error condition-handling routine now."
 Say "I am going to continue processing"
Return

Failure:
 Say "I am in the Failure condition-handling routine now."
 Say "I am going to continue processing"
Return

NoValue:
 Say "I am in the NoValue condition-handling routine now."
 Say "I am going to terminate the program because of this"
 Exit

 Halt:
 Say "I am in the Halt condition-handling routine now."
 Say "I think you hit the attention key!"
 Say "I am going to terminate the program because of this"
 Exit

The following illustrates the output from running the above Rexx exec, causing different
conditions to occur. We do this by replacing the "main processing section" .

Page [270]

Example 1
Main processing section:
Say "1) This statement is perfect, and will generate no errors."
Say "2) The next statement will generate a Syntax condition"
PI = 3.1416
Circumference = PI *

Displays:
1) This statement is perfect, and will generate no errors.
2) The next statement will generate a Syntax condition
I am in the Syntax condition-handling routine now.
I am going to terminate the program because of this

Example 2
Main processing section:
Say "3) The next statement will generate a Error condition"
"Delete junk.data.set"

Displays:
3) The next statement will generate a Error condition
ERROR QUALIFYING XCON620.JUNK.DATA.SET
** DEFAULT SERVICE ROUTINE ERROR CODE 20, LOCATE ERROR CODE 8
LASTCC=8
I am in the Error condition-handling routine now.
I am going to continue processing

(The dataset did not exist)

Example 3
Main processing section:
Say "4) The next statement will generate a Failure condition"
"This is not a good command"

Displays:
4) The next statement will generate a Failure condition
COMMAND THIS NOT FOUND
 10 *-* "This is not a good command"
 +++ RC(-3) +++
I am in the Failure condition-handling routine now.
I am going to continue processing

Page [271]

Example 4
Main processing section:
Say "5) The next statement will generate a NoValue condition"
Say "My age is " MyAge

Displays:
5) The next statement will generate a NoValue condition
I am in the NoValue condition-handling routine now.
I am going to terminate the program because of this

Page [272]

Appendix

Rexx instructions
Address
Arg
Call
Do
Drop
Exit

If
Interpret
Iterate
Leave
Nop
Numeric

Options
Parse
Procedure
Pull
Push
Queue

Return
Say
Select
Signal
Trace
Upper

Rexx functions
Abbrev
Abs
Address
Arg
Bitand
Bitor
Bitxor
B2X
Center
Centre
Compare
Condition
Copies
C2D

C2X
Datatype
Date
DBCS
Delstr
Delword
Digits
D2C
D2X
ErrorText
Externals
Find
Form
Format

Fuzz
Index
Insert
Justify
LastPos
Left
Length
Linesize
Max
Min
Overlay
Pos
Queued
Random

Reverse
Right
Sign
Sourceline
Space
Strip
Substr
Subword
Symbol
Time
Trace
Translate
Trunc
Userid

Value
Verify
Word
WordIndex
WordLength
WordPos
Words
XRange
X2C
X2D

TSO External functions
ListDSI
Msg
OutTrap
Prompt

Storage
SYSDSN
SysVar

TSO commands
DelStack
DropBuf
ExecIO
ExecUtil

HI
HT
MakeBuf
NewStack

QBuf
QElem
QStack
RT

SubCom
TE
TS

Page [273]

Other Rexx References
The MVS QuickRef documentation (on TSO) also contains extensive technical
documentation on Rexx (available only in some shops). This feature is commonly available
via the “QW” command.

Book Manager is available in many shops:
Bookshelf: IKJ2BI01 - TSO/E V2R4 REXX/MVS Reference

Book name: IKJ2A303 TSO/E V2R4 REXX/MVS Reference
Book name: IKJ2C305 TSO/E V2R4 REXX/MVS User's Guide

Page [274]

The End

