Rexx Reference
Manual (TSO)

) - A
ML G- .
by David Grund Sr.

Rev 5 - November 15, 1998
Rev 4 - August 10, 1998
Rev 3 - June 20, 1998

Rev 2 - June 15, 1998

Rev 1 - May 24, 1998

Page [2]

Table of Contents

TABLE OF CONTENTS ..ottt ettt e e e ettt e e e e e s s et e e e e e e e e s seaabbaeeeaeeesaaabbbaeeeeesssassbreeeeaanaan 3
REXX REFERENCE MANUAL (TSO) .. itteiteiiietaiteee it sieesiee s steeestee e sase s ssbessbesssbeessseessasessnsessnsessees 7
SECTION | - REFERENCEttt ettt e e et e e e e e e e e eaabbr e e e e e e e s sennbrreeeeaeeean 9
(7] I I = 11
F AN 2] =] Y P PPPPPPPPPPPPPPRt 13
F AN 21 PPPPPPPPPPPPPPRt 14
AADDRESS.ciiiiiiiiiiiiiiieteeeeeeee et ee ettt tee ettt e tetettetteteteatatattttetetttetesetetatttttsestsetasttasetesesaeasasssastssansrrrrnrnrnnrrrnns 15
AAPOSTROPHESceitiiiiiiieieieeeeeeeeeeeeeeeeee s e e eee e e s e e sesssssssesaesesssessesssseassssssssssssasssasssssssssnsssssnsssssssssssnnssnnnnnnns 17
F AN PP PPPPPPPPPPPPPPRS 17
A SSIGNMENT STATEMENT ...eeiiiiiiiiiieieeeeteeeeeeeeeeeeeeeeeeeeseeeeesaeesessseeassnsssnnns 18
=Tl AN N T PP PP PPPPPPPPPPPPPRt 19
(=]l O PP PPPPPPPPPPPPPRt 20
=Tl D, O TP PPPPPPPPPPPPPPIRt 21
(50, G OO PR PR 23
0 24
LY I 0 25
CENTER/CENTRE .. .uttttteteeeetieiuttreeeeeessiaittaeeeseeesiaastbaeeesaessaaasstseessaesssaassbaesesasessasssbsaeesaesssassrbseessasesannsses 26
O 1 27
L0001 1 28
(00 Y 1Y 1= N 15 29
L0001 1= 30
COMPARISON OPERATORS..uiiieieaeeeaaeeaeaseseaea e e s e s s s s s s e s s s s s s s s s e s s s e e e e nnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnn 31
(0] 107 = 7N [32
(0] 1 B 1T 33
L00] V1 1TV 1@ 34
L0 = 1 =1 35
(03] B J RO PRI 36
(O3 TP PRI 37
(DN N IR = =T PO PP PPPPPPPPPPPPIRt 38
[1 = PO PPPPPPPPPPPPPPIRt 39
DDEL ST ACK .uuttittiittttitttteetteesseeseeeseseeaesesessssssssssssssssssesssssss s s s s e s s e s s s s s s s s s e s s ssesssssssssesssssssssnnnnnnnnssnnsnnnnnnnnnnnns 40
(DTS = PP PPPPPPPPPPPPPPPRt 41
DIELVVORDutiiiiiiiiiiiitesetsesssessesssesssessssssssssssssssssssssssssssssssssessessssssssssssssssssssssssssssssssssnsnssssnssssssnsnsnnnnnnns 42
DI T T E= TSRO PPPPPPPPPPPPPRt 43
[T PP PPPPPPPPPPPPPPPRt 44
(D] 0] = PP PPPPPPPPPPPPPPIRt 47
D) OSSO PR PRPR 48
[0, G RSP RRR PR 49
[N o PP PPPPPPPPPPPPPPPRt 50
E RROR T EX T ..tttttttttttttttsesseesssesessessssseassss s e s s s e s s e s s s e s s s s s s s e s s s s s s s s e s s s s s s s s e s s s e s s s s e s s s s s s s s s s s s ssssessssnnnnnnnnnnnnnnnnnnnnnnns 51
[= ol [@ L PSP PPPPPPPPPPPPPPPRt 52
[PP PPPPPPPPPPPPPPPRt 56
= @1 =P PP PPPPPPPPPPPPIRt 57
[= 21 PP PPPPPPPPPPPPPPIRt 58
[N0 IO PP PPPPPPPPPPPPPRt 59
[PSP PPPPPPPPPPPPPPIRt 60
[0 L Ny PSP PPPPPPPPPPPPPRt 61
[U PP PPPPPPPPPPPPPPPRt 62

IF, COMPOUND ..o 65
IF-THEN-DO ..o 66
INDEX .o 67
INSERT e 68
INTERPRET ...ccoiiiiiiieeee ettt 69
ITERATE ..o 70
JUSTIFY 71
[== I T PP PP PPPPPPPPPPPPIRt 72
N1 I 0L T PP PPPPPPPPPPPPIRt 73
I =N PP PPPPPPPPPPPPPRt 74
= PP PPPPPPPPPPPPPRt 75
= T 1 PP PPPPPPPPPPPPPPIRt 76
I TN =P PPPPPPPPPPPPPPIRt 77
(IS B SRR RRRPP 78
I =YY PP PPPPPPPPPPPPPRt 82
L OGICAL OOPERATORSuuutttuuesssnns 83
1Y 1 1 PP PPPPPPPPPPPPPPIRt 84
{0 Y =P PPPPPPPPPPPPIRt 84
1Y N PSP PPPPPPPPPPPPPRt 85
1Y LN PP PPPPPPPPPPPPPPPRt 85
Y TSP TRPR 86
INEWVVSTACK ..uuttttititttttteeessessssseeesesssssesesss s esssssssssssssssssssssss s s s s s s s s s s s s s e s s s s s s s sesssssssssesssssssssnsnsnnsnnnsnnnnsnsnnnnnnns 87
NP ...ttt e e e e e e e e e e e e e e b b — e e e e e e e e e e hb———eeaeeeaaa——r—retaeee e e bbrerataeeeaaabrrareaaeeeaaaarrraees 88
INUMERIC .1tttitiitttttttteteeeeeeee et ettt ee et e eeeee et e s s e e st e s s s s s s s s s s s s s s s s s 525 s s s s s s s s s s s s s e s s s s s s s s s e s s s s s s s s s sssssmsnsnnsnnnnnnnnnnnnnnnnnns 89

N[0T = g Lol B Yo] £ PSR TR R 89

N[00 7= Aol =0 o 0 ¢ FET OSSPSR 20

NUMEITC FUZZ.......c. ottt et e e e e e e et e e e e e e e s e bbb e e e e e e e s s eabbbeeeeeeesssabbreeeeeenean 91
L= Ny 1) 1 93
L0 10 11N = A9
L Y= o 95
[N S S PP PPPPPPPPPPPPIRt 96
PO, ..o e e e e e e e e b ——— e e e e e e e e e ———eeeaeeeaaaabrreeaeaeeaaaabrrareaaeeeaaares 101
PROGCEDURE. ... tttttttitttttettttteeeeeetee e eeeeteatae et ee e s e s s et s s s s s s ss s s s s s s s s s e s s s s s s s s s s e s s s e s s s s s s s s s s s sssesnsssssnsnnnsnnnnnnnnnnnnnnnnns 102
[(0] V=2 SO PPPPPPPPPPPPPPRS 103
| PP PPPPPPPPPPPPPRS 105
[S SO PRRRRRORt 106
L0 1) 7Y PP PRPPP 107
L 11 = PP P P PEPPP 108
L0 10 == o L P UEPP P PEPPP 109
QUOTATION MARKS/APOSTROPHES........uttiieiitteeeeiitieeessiteeeessstesassasteeesssessesassessssnssssessnsessesassesessnsseeens 110
TN N[0 Y PP PPPPPPPPPPPPPPRS 111
[(OSSP PRRRRRORt 112
=S U I SO PPPPPPPPPPPPPRS 113
RETURN L.1tttttttitiiittttttteteeeeteee ettt et et et e ettt e e et s e st st s st s s s s s s s s s s s s s s s s s 525 s s s s s s s s s s s s s e s s s s s s s s s s s s s s s s e ssssessnnnnnnnnnnnnnnnnnnnnns 114
REVERSE ... utittiitiiitttttteteeeeeeesseeeeeeeee e et eeese s e es e s e s st s e s s s s s s s s s s s s s s s e s s s s s e s s s s esnseeenesnnnnnnnnnnnennnrnnnnns 115
LT I AP PPPPPPPPPPPPPPRS 116
N RSO PRRRRROR 117
= 118
S 0TI 119
IO ettt e eeeeeeeeeeeeeeseeeaeaessassessesessssssssssesssssssssssssssssssssssssssssssesesenen 121
IO ettt eeeeaeeeeeeeeeseeeeeeeeeaseesesessssesssssssssssssssssssssssssssssssssesessesesenen 122
TN 123
T NN 124

S N 0 = 126
X2« 127
S 1= 129
0= 5 130
B =) I 131
I =AY @ 132
) 71112 133
SY SDISN Ltttiiiieiii ittt e ettt et e e e e e et e e r e e e e e e e et aa—————eeaeeeaaabr——eeaeeeaaahbrreeaaaeeaaabbraraeaaeeaaabrrareaeeeeaananes 134
SY SV A R et e e e e e e e e e e e e ————eeeeeaaa——reeaaeeeaaabbrarataaeeaaabrrareaaeeeaananes 135
IV E 136
TRACE .. 138
TRANSLATE . 139
TRUNC ... 141
(0] = = = PP PPPPPPPPPPPPPRS 142
USERID ..1eeeiiiee ittt ettt e ettt e e e e e e et bbb e et e e e e s eeab b b e e e s aeeesaaasbbaeesaeeesaasabbreeeeeeesaasbbraeeeeeesaannees 143
VALUE «..eeeeieiteieeeeeeeeeeeee ettt ettt et ettt et ittt e e eeeeeeeeeeeseesessseeesessessesseesssasssaasssssassassasesasesesessensaesssssssrnnnnrrnnnrnnn 144
NV ARIABLES.ccitttiitiiiiiiiieieeeeeeeeeeeeeee e e e e ee e s e e e e e e e s easesesssssessaeseseesseseessssssessssssasasssasssasssssnsnsssssssssssnsssnnnnnnns 145
V ARIABLES, COMPOUNDccitttitittiiieteeeetteeeeeeeeeeeesessessessessssseesesssnsnnnns 146
WV ERIFY ..eeiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e s eesesessssssesessssseesesssssassssssasssasasssasasassssansasssssesssnnnnsennnnnnn 147
MVORDceiiieeiiieeeeeeeee ettt ettt ettt ettt ettt eeeeeeeeeeeeeeseeeeeseeeeeesseeeeeeeseeseesesseessseasetaneseeesseasararaarssranrnrrnrnrnnes 148
WV ORDINDEX ...eieiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e e e eeeeesessesseeseessssessssssssssssssssssessasssasesasssssnsssssssssssssnnssnnnnnnns 149
MV ORDLENGTH ..eiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeee e et eeeee e e e e s e e e seeessseesssssssassssssssssssasssassssssssnnssssssssssssnnnsnnnnnnnn 150
VVORDIPOS. ...ttt ettt ettt ettt eeeeeeeeeeeeseeeeeeeeeeeeseessssasssssssssssasssanssssassansssssnssssssnnnsnnnnnnnns 151
MV ORDSceiieiiiiiiieeeeeeeeeeeeee e ettt e ettt eeeeeeeee et eeeeeeeeeeeee e s s e s e e e ee e e s s e eseeeesssaaesessessseeaseeenesseseesasararasrssrnnrnrrnrnrnnn 152
XRANGE ... 153
D 07 OO PO PR 154
D07 B SRR OO PR 155
INSTRUCTIONS NOT COVERED.........ccciiieeeeeeeeee e 156
SECTION Il -A STARTER REXX TUTORIAL ...ttt eivrre e 157
SECTION T - REXX EXAMPLES..... .ottt ettt e et aa e e e e e e s eaabreeeeaa e s 159
ALLOCEIO - ALLOCATE O/P DATASET; WRITEARRAY TO I T .cciiiitrreieeeeeiiiitrrreeeeeeesesinsrseeeeessssenssseeess 162
CAPTSO - CAPTURE TSO COMMAND OUTPUT ...uuuuiiiiiieiiaeaeeeaeeeese s s s nas 163
CHGBLKC - INSERT A COBOL CHANGE BLOCKuuuuiiieeiiaieaaaaaaaaeseeeaeeee s eesases e s s s s snnnnn 164
CHGDATA - MODIFY A DATA FILE . iiieieieeeeeeeeeeeeeee e se e e e e s s e s e e s s e s s s s s s s s s s s s a e nnnnnnnnnn 165
CHGSTEP - CHANGE STEPSIN JCL ..uuuieie i 168
COMMANNDS - LIST AVAILABLE COMMANDS.uuuiiiieiieaaaeesaaeeeeae s e e s e e s s e s s s nanan 169
COMPCO - COMPARE TWO FILES OF ORDER NUMBERS.......uuuuiiiiiiiiiiiiiieeeeee e 170
COMPDS - COMPARE TWO SEQUENTIAL DATASETS . ttttttiiiieiiiisttiiisieessseestisssessssesssassssesssessssnseessne 172
COMPDSE — CoMPARE TWO SEQUENTIAL DATASETS - ENHANCED.......ccvvviiiiiiiiieeitiee e 173
COMPPDS - COMPARE TWO PSS ... s 175
CONCATL - CONCATENATE LIBRARIES. ... uiiiieiiiaeeeieeeese e e e s nan 178
CPDSIX — COMPARE TWO PDS INDEXES. .. .uuiiiieieieieeeeie e eese e 179
DD - ADD A DD STATEMENT ...utuuttttttttutsetssessesssssresssssmmm 182
DELDUPS - DELETE DUPLICATE RECORDS.......ccuutttttttttttttttseereeeeeeesssssesssesssssssssssssssssrsreresses .. 184
DURATION - TIMEANEXEC ...ttt ettt ettt e e e e e e st bre e e e e e e s s nanbbreeeeeeesennnees 185
FINDMEM - FIND A MEMBER IN A CONCATENATIONuuuutuuttttteeeesesssssssessnne 186
FIXJCL = FIX JOB CONTROL ..vtttttuutuessnnes 189
FX = FILE NAME CROSS-REFERENCE00uuutttetsstssne 204
HD = HEX DUMP......etiiiitittitetteteeeeeeeteeeee ettt eeeeeeeaseessssssssssss s s s s e s s s sssssssssssssssssssssssssssssssssnsnsnnsnnnnsnnnnnnnnns 209
INIT - ESTABLISHMY TSO ENVIRONMENTccciiiiiiiiieeeeeeeeee et e e e e e e e e e e e e e e e e e 212
INITSPF - ESTABLISH MY ISPF ENVIRONMENT ...cceiiiiiiieieeeeeee et 213

JOBCARD - CREATE A JOBCARD ...uuiiiiiiittttiiieeesseetbassssssseesbbassesssseatbaa s eessses s bbb seesseesbbaassseesseenssen 214

JUMBLE - DISPLAY ALL COMBINATIONS OF LETTERS.....cci it e iieeeeeeeeeeeeeeeeeeee e 215
LA = LIST TSO ALLOCATIONS. .. euuuuuuuuuussessnnes 236
LAE - ISPF EDITMACROFOR LAoeiiiiitiiiitiitttteteteeeeeeeeeeeseteeesesssnnsnnnnns 236
LOTTERY - PICK LOTTERY INUMBERScutttttttttttttsttsssssssssssesssmmsmsme 238
LISTDSI - LIST DATASET INFORMATIONuuttuttusssessnnes 240
LPDSIX - LISTAPDS INDEX TOA SEQUENTIAL FILE....ccuttiiiiiiiiiiiiiiiii ettt eeebn e e aa b 241
PROCSYMS - PERFORM SYMBOLIC SUBSTITUTIONuuuuuuersssreesssmsssene 243
PTS - PDSTO-SEQUENTIAL;, MEMBER NAME ISPREFIX ...cutttuiiiiiiiiiitiiiiiiieessiessiiiiseessssssssneessesssssnnnnns 247
PTS2 - PDSTO-SEQUENTIAL; MEMBER NAME ISINSERTED ..uuviiiiiitiiiiiiieeeeeessiiissseessesssssasseessesssssnnnsns 249
REXXMODL = REXX EXEC IMODELuvvuuuuiiiiieustsssnnes 252
SCALE = DISPLAY A SCALE ..t e e e e e nnnnnnnnnnnn 253
SDN - SORTED DIRECTORY W/NOTES: DIRECTORY ANNOTATORccocuvtrieeeeeeiiitrreeeeeeeessssssreeeseesssnnnnns 254
SHOWNDUPS - SHOW DUPLICATES ...t nan 257
STACK - START ANOTHER | SPF SESSIONuuuuiiiiiieiiiiiee e 258
TIMEFMTS - SHOW ALL TIME FORMATS ... ittt e e e e 259
TIMETOGO - DISPLAY TIMEUNTIL AN EVENT ... 260
SECTION IV - THE REXX ENVIRONMENTottt eanrre e 261
ESTABLISHING YOUR REXX ENVIRONMENTeuututttuutssesssnnes 263
USING REXX WITH ISP ..ottt ettt e ee et e e eeeessseesesssnnnsnnnns 264
USING REXX IN THE BACKGROUND (BATCH JOBS) «..uvetetteaiuteasuressseeasseeasseeasssesssessssessssssssssessnsessnsessnses 266
DEBUGGING YOUR REXX PROGRAMcuuuuttttttesstsssnne 267
INtEraCtiVe TraCE IMOAE.uvveeeie ettt e e e e e s et e e e e e e s s eabbreeeeaeesesabbreeeeaeean 267
TRAPPING ERRORS..... oo 268
SIGNAL ON CONDITION .1 uuteeteeeeeeeeeaeeeeee e e e eee e e e e e e s e s s e e e e s e s e e s e e e nnnannn 268
SIGNAL OFF CONDITION. .. ieeeeeeeeeeeeeee e e e e ee e e e e e e e s e e s e e s e e e s e e e s e e nnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnn 268
CALL ON CONDITION NAME SUBROUTINENAMEuuuiieieeieaaeeaaeaeeee e e e e e s e anan 268
[@00] V1 B 1T 268
N Y= I =SSP PPPPPPPPPPPPPPRS 269
F AN e = AN OSSO PRRRRRRRORt 272
REXX INSTRUGCTIONS.utttttttessesssnnns 272
REX X FUNGCTIONS. .. 1tttttttttvttessnsnnns 272
TSO EXTERNAL FUNCTIONS. ... e ii et e 272
TSO COMMANDS.o 272
OTHER REXX REFERENCES.t e e e e e e e s e s e e e e nannnnn 273

Page [6]

Rexx Reference Manual (T SO)

Rexx isthe Restructured Extended Executor Language. New with TSO/E version
2, Rexx isahigh-level procedural language that allows programmers to mix instructions
with TSO commands, and build high-powered tools and utilities, called “exec’s.

Rexx is a programming language. Rexx is a fascinating language. It is, from my
viewpoint, IBM's answer to Basic. It is an English-like interpreted language. No compiler
is needed. The computer reads the instructions, one at atime, and if it can interpret it, it
will execute it.

The thing that Rexx is best suited for isto create data-manipulation tools,
especialy for one-time use or for development. Once you learn how to use the language,
you can tailor data in ways you never dreamed.

Why learn Rexx? Knowing Rexx can give you a powerful advantage. Being ableto
manipulate datain esoteric and creative ways can be a tremendous aid to your
productivity. Rexx can be very useful for creating and verifying test data, formatting
output data, file-integrity-checking, and creating tools that help make your job easier.

A Rexx program can be written far more quickly than one for COBOL or
Assembler, for the same task at hand. Y ou wouldn't want to use Rexx in production for
high-volume files, though. That's the job of a compiled program. Rexx is for the "quickie",
and low-volume tasks.

The reason | decided to write this book, is that with the reference | was using, it
took too long to find information that | was looking for. The author of that book knew his
stuff, but | felt he had no clue as to what to present, or how to present it. The organization
of that book and lack of meaningful examples was frustrating, and simply not acceptable.

This reference discusses Rexx and its use with TSO, as opposed to CMS or
personal computers. The intended audience for this book is al levels of mainframe
programmers, and "computer-literate” users. Y ou should be at least familiar with TSO,
have a TSO UserID, and be able to log on to a mainframe.

| wrote this from the point of view of a Rexx user, and not a teacher. While | was
writing this, | envisioned rea-life situations that | could find myself in, and | then tried to
illustrate the best way to handle it. The examples were not written for the sake of example;
they were written to show how to solve a given problem. | added many examples from my
real-life work experience. These are execs that | used to solve real problems.

So it ismy hope that this reference is easy to use, has useful and pertinent

examples, and can help you get your job done. This manual is the quickest way to get up,
running, and productive in Rexx.

Page [7]

All of the examplesin this book have been tested on an IBM mainframe, on
Rexx370 Vers 3.48 01 May, 1992. Any errors resulting in the use of these examples
would probably then be due to environmental differences, or the transfer of the example
from this document.

If there is something about this book that really bugs you, or really pleases you, or
if you have any other comments, criticisms, or suggestions, please fedl free to e-mail me
at: dgrundsr@earthlink.net.

This book is divided into five sections.

The first section is areference, for the experienced programmer. | put this section
first because | fed that thiswill be the one that is used the most. With this format, you
don't have to worry about whether a Rexx component is a function, instruction, or
anything else. Just flip through the al phabetically-sorted reference, find the keyword, read,
and use!

The second section of this book is a short Rexx tutorial. Thisiswhere the beginner
should start.

The third section of this book will be examples: useful examples.

The fourth section of this book will be on the Rexx environment: how to establish
and maintain it, and how to use it alone, and in conjunction with | SPF.

The fifth section of this book, the appendix, contains lists of instructions by class,
and other Rexx references.

Page [8]

Section | - Reference

Page [9]

Page [10]

Form:

First Line

General Rules

The Rexx language is generally free-form. Y ou can put any number of
spaces between instructions, operands, etc.

The elements of a Rexx exec are: Rexx instructions, Rexx functions, TSO
external functions, and TSO commands.

There elements generally end at the end of aline or at the beginning of a
comment, whichever comes first. They can be stacked on the same line if
separated by semi-colons.

A Rexx exec isidentified by the character string "REXX" (no quotation
marks) in the first line of the exec. Generally, it is recommended to start a
Rexx exec off with acomment stating the name, short description, and

"REXX" keyword, as follows:
/* MyFirst - MyFirst Rexx Program */ or
/* Calcl - My Cal cul ator Rexx */

Rexx is also case-insensitive. Use upper- or lower-case letters at your discretion.
Note, however, that some functions look at the case of letters!

All values that appear in Rexx statements are transated to upper case unless they
are enclosed in matching apostrophes or quotation marks.

In some cases, not al of the operands of an instruction are discussed. There are
some operands that are highly esoteric, that | feel will be needed only in extremely specific
situations. The appendix contains information on additional Rexx reference material.

Page [11]

Page [12]

Purpose:

Type:
Syntax:
Usage:

Examples:

Abbrev

Return a1 (TRUE) or zero (FALSE) based on the test that a word begins
in acertain string. It is a subtle variation of the LEFT function.

Rexx Function
Result = ABBREV (word,string,length)
If the first length characters of word = string, then result will be TRUE.

Result = ABBREV("America’,"Am",2)
/* TRUE; Result = 1 */

Result = ABBREV("America’',"mer",3)
/* FALSE; Result =0*/

Page [13]

ADbs

Purpose: Return the absolute value of a number: drop the sign, and format according
to the current setting of NUMERIC DIGITS.

Type: Rexx Function
Syntax: NewNum = ABS(OldNum)

Example: NewNum = ABS(-436)
NewNum will be 436.

Page [14]

Purpose:

Type:

Syntax:

Usage:

See Also:

Example 1:

Address

Return or change the setting of the environment that is currently receiving
commands

Rexx Function and Rexx Instruction

1) Address Environ string (instruction)
2) Environ = Address() (function)

Rexx passes to the environment any strings that are enclosed in quotation

marks (or apostrophes), or any that it does not know what to do with.

1) Theinstruction form sets the environment that will receive these strings
that are fed through by Rexx. This setting is "permanent” (for the
duration of the current exec), unlessit is supplied on the sameline. If it
is, then the setting that is specified is valid only for the string on that
line. Rexx doesn't care what you set the environment to at the time you
use thisingtruction. Thereis no validation at this point. The default is
"TSO".

2) The function form simply returns the current environment setting

SubCom

The following Rexx exec illustrates the use of the Address function and the

Address instruction.

Say "Environ = " Address()
Address TSO

Say "Environ = " Address()
Addr ess | SPEXEC

Say "Environ = " Address()
Addr ess WS

Say "Environ = " Address()
Addr ess Junk

Say "Environ = " Address()
Addr ess Dave

Say "Environ = " Address()

Will display:

Environ = TSO
Envi ron TSO
Envi ron | SPEXEC
Envi ron MS
Envi ron JUNK
Envi ron DAVE

Page [15]

Example 2:

Example 3:

The following Rexx exec illustrates the effects of the use of Address:
1 "Browse Dat aset (Rexx. Exec) "

2 address ispexec

3 "Browse Dat aset (Rexx. Exec) "

4 address ispexec "Edit Dataset (Rexx. Exec) "

Explanation of the above exec:
1 Thisis acharacter string that Rexx does not understand, so Rexx passes
it to the environment. Since the environment was not set, it remains as
"TSO". TSO, in turn, does not know what to do with this character string,
so the following displays:
COMVAND BROWSE NOT FOUND

3 *-* "Browse Dataset (Rexx. Exec) "

+++ RC(-3) +++

2 Rexx now sets the environment to "ISPEXEC" (the name for ISPF's
environment).
3 I SPF receives this character string, and knows what to do with it, so it
opens the dataset called "Rexx. Exec" for Browse.
4 Thisline is setting the environment at the same time as sending the string.
| SPF then edits a dataset called "Rexx. Exec".

This exec demonstrates the "temporary"” environment setting.
1 address TSO

2 address ispexec "Edit Dataset(Rexx. Exec) "

3 "Browse Dat aset (Rexx. Exec) "

4 address | SPEXEC

5 "Edit Dataset (Rexx. Exec) "

In the above exec,

Line 1 sets the environment to "TSO"

Line 2 will edit "Rexx.Exec", having set the environment temporarily to
|SPEXEC.

Line 3 will err, because TSO does not recognize the command:
COMVAND BROWSE NOT FOUND
5 *-* "Browse Dataset (Rexx. Exec) "
+++ RC(-3) +++
Line 4 will set the environment to | SPF
Line 5 will edit the dataset successfully.

Page [16]

Apostrophes
Purpose: To enclose aliteral (character string).

See "Quotation Marks/Apostrophes’ for documentation on this function.

Arg
Purpose: Retrieve data from the TSO command line.
Type: Rexx Function and Rexx instruction

See "Parse" for documentation on this function.

Page [17]

Purpose:

Syntax:

Examples:

Assignment Statement

To assign avaue to avariable. The value you assign to the variable can be
any type: character, number, hex, binary, etc.

Variable = VaueFormat
Variable The name of the variable being assigned. It can be

up to 250 characters long, but | don't know why

you would want to do that to anyone.

Value Thevaluethat you are assigning to the variable

Format The representation of the value. The default is

character. Valid values are " X" for hexadecimal,

and "B" for binary.

1 assigns the value '1' to the variable 'A’
"FIF2F3F4"x assignsthe value '1234' to variable 'B'

A
B
C ="11110010'B assgnsthevaue'2 (X'F2)to C

Page [18]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

Example 3

BitAnd

Return a string that is the result of two strings that were logically AND'd
together.

Rexx Function

Result = BitAnd(stringl,string2,padString)
Sringl and Sring2 are the strings used in the AND operation.
padString is a string used for padding

To AND two stringsis to multiply the bits of one string to the
corresponding bits of the other string, and return the result. In English, it
reads, "If the bit of the first string AND the corresponding bit of the second
string are both on, then the resulting bit will be on. Otherwise, the resulting
bit will be off."

padString is used to fill the shorter of the two strings (on the right) so the
strings are the same length when being processed. If no padString is
supplied, the operation works only for the length of the smaller string.

The sole purpose this function has is to do bit-level manipulation.
This function is the opposite of BitOr.

The following example will convert a one-character reply from upper-case

to lower case, by virtue of turning off bit 1:
Resul tString = BitAnd('Y ,"'10111111' B)
Say ResultString

The upper case'Y' is X'ES', or B'11101000.
The lower case'y' is X'A8, or B'10101000'".

The following example will convert al letters of a string to lower case

(taking the above example a step further).

Sentence = "The Qui ck Brown Fox Junps Over The Lazy Wite
Dog"

ResultString = BitAnd(Sentence,'10111111'B,"' 10111111' B)

The following example does the exact same thing.

Sentence = "The Qui ck Brown Fox Junps Over The Lazy Wite
Dog"

Result String = Bit And(Sentence, ' BF X, ' BF X)

Notice that the coding in this example is alittle shorter, but not as clear to

the reader: abinary 10111111 equals a hexadecimal BF. | prefer example 2
to example 3 because it is clearer.

Page [19]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

Example 3

BitOr

Return a string that is the result of two strings that were logically OR'd
together.

Rexx Function

Result = BitOr(stringl,string2,pad3tring)
Sringl and Sring2 are the strings used in the OR operation.
padString is a string used for padding

To OR two strings is to add the bits of one string to the corresponding bits
of the other string (with no carry), and return the result. In English, it
reads, "If either the bit of the first string OR the corresponding bit of the
second string are on, then the resulting bit will be on. Otherwise, the
resulting bit will be off."

padString is used to fill the shorter of the two strings (on the right) so the
strings are the same length when being processed. If no padString is
supplied, the operation works only for the length of the smaller string.

The sole purpose this function has is to do bit-level manipulation.
This function is the opposite of BitAnd.

The following example will convert a one-character reply from lower-case

to upper case, by virtue of turning on bit 1.
ResultString = BitO('y',' 01000000 B)

The lower case'y' is X'A8', or B'10101000'.
The upper case'Y' is X'ES', or B'11101000'.

The following example will convert al letters of a string to upper case

(taking the above example a step further).

Sentence = "The Qui ck Brown Fox Junps Over The Lazy Wite
Dog"

ResultString = BitO (Sentence,,' 01000000 B)

String2 is padded to the length of Sentence with binary ‘01000000

The following example does the exact same thing.

Sentence = "The Qui ck Brown Fox Junps Over The Lazy Wite
Dog"

ResultString = BitO (Sentence,, ' 40" X)

Notice that the coding in this example is alittle shorter, but not as clear to
the reader: a binary 01000000 equals a hexadecimal 40. | prefer example 2

to example 3 because it is clearer.

Page [20]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

BitXOr

Return a string that is the result of two strings that were logically XOR'd
together.

Rexx Function

Result = BitXOr(stringl,string2,padString)
Sringl and Sring2 are the strings used in the AND operation.
padString is a string used for padding

To XOR two strings is to compare the bits of one string to the
corresponding bits of the other string, one, by one, and return the result of
the compare. In English, it reads, "If the bit of the first string AND the
corresponding bit of the second string are the same, then the resulting bit
will be off. Otherwise, the resulting bit will be turned on.

padString is used to fill the shorter of the two strings (on the right) so the
strings are the same length when being processed. If no padString is
supplied, the operation works only for the length of the smaller string.

If you XOR something to itself, the result will be hex zeroes.
The sole purpose this function has is to do bit-level manipulation.

Y ou can use this instruction to do some rudimentary character-string
encryption. See the example below.

The following example will demonstrate the effect of this function.
ResultString = BitXOr('11111111' B,' 01010101’ B)
Say C2X(ResultString)

Stringl: 11111111
String2: 01010101
Result: 10101010 (X'AA")

This example will further demonstrate the effect of this function.
ResultString = Bi t XOr (' 10101010' B,' 01010101’ B)
Say C2X(ResultString)

Stringl: 10101010

String2: 01010101
Result: 11111111 (X'FF)'

Page [21]

Example 3

This example demonstrates how to encrypt a character string. Use the
exact same instruction to decrypt it.

Sentence = "The qui ck brown fox junps over the lazy white
dog"

Say Sentence

Sentence = Bit XOr (Sent ence, , ' BF' X)

Say Sentence

Sentence = Bit XOr (Sent ence, , ' BF' X)

Say Sentence

Displays:

Page [22]

B2X

Purpose: Convert a binary string to a hexadecimal representation
Type: Rexx Function
Syntax: Result = B2X (binarystring)

Result is the hexadecimal representation of binarystring, which is astring
of zeroes and ones.

Usage: Convert a binary to a hexadecimal number

Examplel Thefollowing exec:
Say "B2X('11101111')=" B2X('11101111")

Will display the following:
B2X('11101111')= EF

Page [23]

Purpose:

Type:

Syntax:

Usage:

Example:

Call

To invoke, or transfer control to a subroutine or program, expecting to
come back.

Rexx Instruction

Call subroutine
Call program

A Call isused to facilitate structured programming. It iswidely used to
break the mainline processing up into blocks of code that are referenced by
the mainline section. A lot of the examples illustrate structured
programming and the use of Calls.

To cal aRexx exec or Clist implicitely, smply issue an "Address TSO"
command, followed by the name of the Rexx exec or Clist, on separate
lines.

Cal ProcO1 [* Call program section 1 */

Proc01.
{ code}
{ code}
Return

The following code snippet is part of an exec that compares two disk files:
"Address TSO'
"Cal | ' SYSI1.LINKLI B(I EBCOWPR)" "
If RC =0 then
Say "The nodul es are identical”

Page [24]

Call On

Purpose: Establish a subroutine to handle an error condition
Type: Rexx Instruction
Syntax: Call On condition

See "Trapping Errors' in the Environment section of this manual for a
discussion of thisinstruction.

Page [25]

Center/Centre

Purpose: To center a string within alarger string

Type: Rexx Function

Syntax: Center(string,length,pad)

Usage: Center string within alarger string of length characters. If pad is present, it

will be used as the pad character. If it is not, spaces will be used.
This function can be specified as either “Center” or “Centre”.

Example: The following excerpt of a Rexx Exec
Headi ng = "Tuesday"
Field = Center(heading, 30,"'-")
Say Field

will result in

Page [26]

Clist

Purpose: Run a TSO command list the "old" way. Thisiswhat was used to
accomplish the functions that Rexx Execs accomplish today.

Clists are mentioned here only because of their history and effect on today's Rexx
language. | am in no way advocating using them. Anything you could do with a Clist can
be accomplished with a Rexx exec, and usually cleaner.

Clists and Rexx execs dike are typicaly stored in a PDS (partitioned dataset). A

Clist library is alocated to the DDName SY SPROC, while a Rexx exec library is alocated
to the DDName SY SEXEC.

Page [27]

Purpose:

Example:

Comma
To continue a Rexx statement

The following Rexx Exec:

/* T1 - Exanpl e Rexx Program */
JanuarySal es = 100

FebruarySal es = 150

MarchSal es = 5

April Sales = 15

MaySal es = 10

Total = JanuarySal es + FebruarySales + ,
MarchSal es + April Sal es + MaySal es

Say 'The total sales ="' Total

will produce the result "280". Notice the continuation comma after
FebruarySales.

Page [28]

Comments
Purpose: To document an exec, or annotate the lines within.

Syntax: Start with /* and with */. They can span any number of lines, but cannot be
nested (supplied within another set).

Usage: Typicaly, you would comment each block of code with a comment line
preceding that block of code. If you wish to comment one particular line,
code the comment to the right of that line.

Example: [* Thisis a Rexx comment */
Say "Hello, Wrld" /* This is also a Rexx comment */
A=1 /* Set the value of Ato 1 */
B=2 /* Set the value of Bto 2 */
/* C=3 */ /* This instr was comrented out */

@)
I
N

/* Set the value of Dto 4 */

Page [29]

Purpose:
Type:
Syntax:

Usage:

Exanpl e:

Compare
Compare two strings
Rexx Function
Result = COMPARE(stringl,string2,pad)

Compare two strings, and return the number of the position where the
inequality between the two strings starts. If the strings are equal, there is no
inequality, and so the function returns a zero.

When one string is shorter than the other, it isfirst padded on the right with
the pad character. The default pad character is a space.

Characters within quotation marks are treated with respect to their case.
An upper-case letter will not equal alower-case one.

Result = COVPARE(" Appl es", "Oranges")
Say Result

Will yield 1, because the first position is unequal.

Result = COVPARE(" Appl es", " Appl e")
Say Result

Will yield 6, because the sixth position of the first string, "s’, is unequal to
the sixth position of the second string, which was padded to a blank.

Result = COMPARE(" Appl es", " Appl es ")
Say Result

Will yield O, because the strings after padding are identical.

Result = Conmpar e(" Appl esssssssss”, "Appl es”, "s")
Say Result

Will yield O, because the strings after padding are identical.

Page [30]

Comparison Operators

REXX comparison operations resolve to a 1 if the result of the comparison istrue, and a0
if the result of the comparison isfase. REXX aso uses an equality concept called 'strictly
equal'.

Two values are 'strictly equa’ if they match exactly, including imbedded blanks and the
case of letters. Two values are 'equal’ if they don't match exactly, but they resolve to the
same quantity after REXX substitution and evaluation.

The following comparison operators can be used in REXX expressions:

== dtrictly equal

= equd

\== not strictly equal (can also use not sign, X'5F")
\=not equal (can dso use not sign, X'5F)

> greater than

< lessthan

>< greater than or lessthan (same as not equal)
>= greater than or equal to

<= lessthan or equal to

\< not less than

\> no greater than

REXX Comparison Operators Order of Precedence:
\ - (not)

|| - concatenation

& -AND

| && - logical OR and EXCLUSIVE OR

Page [31]

Purpose:

Concatenation
To combine two or more strings or literals into one variable.

One way concatenation is achieved by the use of "Or" bars. These are the
vertical bars that can be found on the keyboard to the right of the +/= key.
Thisisthe preferred way, sinceit is explicit. If you use this method, al
blanks between the two values that are being concatenated will be
suppressed. If you want spaces between your variables, you must
concatenate them as well. See example 1 below.

Another way to achieve concatenation isto simply put two variables of
different types next to each other (juxtaposition). (Note that juxtaposition
is accomplished by smply not using the "or" bars). Two or more
intervening blanks will be compressed down to one. Again, if you want
spaces between your variables, you must concatenate them as well. See
example 2 below.

In summary, usthe "Or" barsif you wish to strip out al intervening spaces.
Use juxtaposition if you wish to keep just 1.

Examples using

"Or" bars:

Say "Exanple 1" [] "Hell o Worl d"
Say "Exanple 1" || "Hello World"
Say "Exanple 1"||"Hello World"

All of the above will result in the same thing:
Exampl e 1Hello World

Notice that all intervening spaces were removed by Rexx.

Say "Exanple 1"||" "||"Hello Wrld"

will result in:
Example 1 Hello World

Notice the intervening space (between "1" and "Hello").

Examples using

juxtaposition:

Say "Exanple 2""Hello Wrld"

Notice that in this example, there is no legitimate concatenation. The
guotation marks intended to define literals (variables of the same type).
Instead, Rexx interpreted this as one string, and by its rules, trandated two
guotation marks into one.

Say "Exanple 2" "Hello World"
Say "Exanple 2" "Hell o Worl d"

Both of the above examples will result in:
Example 2 Hello Wrld

Page [32]

Purpose:

Type:

Syntax:

Usage:

Example:

Condition
Retrieve the setting information for the currently trapped REXX condition.
Rexx Function

Sring = CONDITION('code)

Sring is the returned setting. Code is supplied to request the type of
information. The default is|.

Codes:

C- Return the name of the current condition

D- Return the descriptive string associated with the condition

|- Return the name of the actual instruction that was executing when the
condition occurred

S Return the status of the condition trap. Thiswill be either ON, OFF, or
DELAY.

Thisfunction is used in error trapping.

In the following exec, we try to add Increase to Saary, neither of which

has been defined:

Si gnal On NoVval ue

Salary = Salary + Increase

Say "My salary = " Salary

exit

NoVal ue:

Say "Undefined variable on line" SIG
Say "The current trapped condition is"
condition("C")

Say "The variable is" condition("D")

Say "The name of the instruction is"
condition("Il")

Say "The instruction is:" sourceline(SIQ&)
Say "The status of the condition trap is"
condition("S")

Will result in the following display

Undefined variable on line 4

The current trapped condition is NOVALUE

The variable is SALARY

The nanme of the instruction is SIGNAL

The instruction is: Salary = Salary + Increase
The status of the condition trap is OFF

Page [33]

Continuation
Purpose: To code an instruction that requires more than one line.
Syntax: Instructions are continued with a comma.

See Comma for documentation on this subject.

Page [34]

Copies

Purpose: Copies a string to itself a specified number of times.
Type: Rexx Function

Syntax: Result = COPIES(string,quantity)

Usage: Set result to quantity sets of string.

Example: Line = COPIES(**",75)
Will result in the variable "Line" containing 75 asterisks.

Page [35]

Purpose:

Type:

Syntax:

Usage:

Example:

C2D

Convert a string to its decimal equivalent

Rexx Function

Result = C2D(string)

Internally, the function first converts the string to its hexadecimal
equivalent. Then it converts that hexadecimal value to decimal. It isthe
inverse of D2C.

result = C2D(" ") [* Two spaces */

After execution of the previous instruction, result will contain 16448, the

decimal representation of X'4040'

result = C2D("6")
result will contain 246, the decimal representation of X'F6'

Page [36]

Purpose:
Type:
Syntax:

Example:

C2X

Convert a string to its hexadecimal equivalent
Rexx Function
Result = C2X(string)

result = C2X(" ") [* Two spaces */
result will contain 4040

result = C2D("6")
result will contain F6

Page [37]

Purpose:

Type:

Syntax 1.

Syntax 2:

Examples:

DataType

Thisis aRexx built-in function that will allow you to test to see the type of
data a variable contains. There are two forms of this function.

Rexx Function

Result = DATATY PE(string)
If string was a number, result would contain "NUM". Otherwise, it would
contain "CHAR".

Result = DATATY PE(string,type)
Using this form, result will contain aone (TRUE) if string corresponds to
type. Otherwise, it will contain azero (FALSE).

Type | Description

Alphanumeric: A-Z, az, 0-9
Binary: O or 1 only
Double-byte character set
Lower-case letters
Mixed-case |etters

Number

Symbol: valid Rexx symbol
Uppercase letters

Whole number

Hexadecima number: 0-9, A-F

x|s|c|ln|z|z|r|O|w|>

The following excerpt:
I f datatype("Dave", M then
Say "Dave is mxed case"
el se
Say "Dave is not nixed case"
will display:

Dave is m xed case

Page [38]

Date

Purpose: Thisisa REXX built-in function that will provide you with the current
date, in avariety of different formats.

Type: Rexx Function

Syntax: Result = DATE(option)
Based on the specification of the Options below, "result”" will contain the
date in the corresponding format, if the current date was April 8, 1997:

Usage: see the chart below

Option | Meaning Format Example

(blank) | European dd Mmm yyyy 8 Apr 1997

N

B Basedate: Number of complete days nnNNNN 729121
since January 1, of the year 1.

C Century: Number of daysin this century | nnnnn 35527

D Days. Number of days so far this year nnn 98

E European dd/mm/yy 08/04/97

J Julian date yyddd 97098

M Name of the current month Mmmmmmmm April

©) Ordered, suitable for sorting yy/mm/dd 97/04/08

S Ordered, suitable for sorting yyyymmdd 19970408

U USA format mm/dd/yy 04/08/97

W Name of current weekday Dddddddd Tuesday

option is not case senditive. Y ou can use either upper or lower case.

Examples: If today was April 8, 1997:
Today's date is date()

will yidd:
Today's date is 8 Apr 1997

Today is Date(M

will yidd:
Today is April

Page [39]

Purpose:
Type:
Syntax:

Usage:

DelStack
To delete the most recently-created TSO stack in preparation for use of it.
TSO Command
DELSTACK
Use thisinstruction right before you begin adding items to the TSO stack.
This ensures that you don't inadvertently process data that was left on the

stack by a previous program.

Thisistypicaly used in conjunction with the (Parse) Pull instruction.

Page [40]

Del Str

Purpose: Delete characters from a string

Type: Rexx Function

Syntax: Newstring = DELSTR(string,start,length)

Usage: Remove characters from string starting with position start, and for a length

of length. The resulting string will be placed in newstring. The default for
length is the entire remainder of the string.

Example:
Result = DELSTR("ABCDEFGHIJKLMNOPQRSTUVWXY Z",3,20)

After execution of thisinstruction, result will contain "TABWXYZ".

Page [41]

DelWord

Purpose: Delete words from a string

Type: Rexx Function

Syntax: Newstring = DELWORD(string,start,quantity)

Usage: Remove quantity words from string starting with word number start. The

resulting string will be placed in newstring.

Example:
Result = DELWORD("FourScore and seven years ago, our fathers",3,4)
After execution of thisinstruction, result will contain
"FourScore and fathers".

Page [42]

Digits

Purpose: Specify the number of digits that Rexx carriesin arithmetic operations
(precision).

Type: Rexx Function

Syntax: Numeric Digitsn

See Numeric Digits for documentation on this function.

Page [43]

Purpose:

Type:

Syntax:

Usage:

expression

variable=start
TO limit
BY increment

Do

Execute a set of instructions, either under the control of a counter variable,
or based upon current program conditions.

Rexx Instruction

DO expression

variable=start

TO limit

BY increment

WHILE expression

UNTIL expression

FOREVER

(one or more statements to execute)
END variable

There are severa formats of the DO instruction. Each of the operands of
the DO instruction as illustrated above are optional.

For the sake of explanation, the instructions in between the DO and END
are commonly referred to as a DO Group.

If no operands are supplied, then the instructions in the DO Group are
executed one time.

Any valid REXX expression, but it must resolve to a positive whole

number.

DO 19 Do | =19

(one or moreinstructions) (one or more instructions)
END End

Both of the above examples would execute the instructions 19 times.

Choose a control variable, and assign it a start value. This control variable
isincremented by the BY amount on each iteration of the loop. The loop

will stop when the control variable reaches the limit.
Dol =1 TO UpperLimt BY 1

(one or more instructions)
End

In the above example, | is the control variable. It starts with avalue of 1,
and the loop continues until | = UpperLimit.

Page [44]

BY can be a negative number if UpperLimit starts out to be less than the
control variable.

WHILE expression
UNTIL expression

FOREVER

END Variable

Examples:

Continue to perform the instructions WHILE or UNTIL the expression is
true. WHILE and UNTIL have opposite connotations. WHILE will test for
atrue condition before the do group is executed. UNTIL will test for atrue
condition at the end of the do group. Using UNTIL assures you that the do
group will execute at least one time.

Times = 1
Stillln ="Y
Do Wiile Stillln ="Y
Say "I amworking on iteration nunber "Tines
Times = Tinmes + 1
If Tinmes > 5 then Stillln ="'N
End
Times = 1
Stillln ="Y
Do Until Stillln ="N
Say "I amworking on iteration nunber "Tines

y

mes = Tines + 1

Times > 5 then Stillln = 'N
End

The two examples above will produce identical results:
am wor ki ng on iteration nunber 1
am wor ki ng on iteration nunber 2
am wor ki ng on iteration nunber 3
am wor ki ng on iteration nunber 4
I amworking on iteration nunber 5

Notice, however, that the only difference between the two examplesis the
expression following the conjunction (WHILE/UNTIL)

If you are in doubt as to which conjuntion to use, then apply the KIS
principle (Keep It Simple). Use the one that makes the code easier to
understand.

Execute the do group continuously, until "told" to stop.

A control variable name can be supplied to an END statement to clarify

which DO group the END statement refers to.
Dol =1to 4
DoJ=1to 13
(one or nore instructions)
End J
End |

Page [45]

Caution:

Dol =1to 25
Say "Hello, world!"
End

The above example will print the message Hello World! 25 times.

Dol =1to O
Say "Hello, world!H"
End

The above example will print nothing, because 0 < 1.

Dol =1to 10 by 2
Say "Hello Wrld #"lI
End

The above example will print:
Hello World #1
Hello World #3
Hello Wrld #5
Hello World #7
Hello World #9

Dol =1to 100 by 2 for 5
Say "Hello World #"I

End

The above example will print:

Hello Wrld #1

Hello Wrld #3

Hello Wrld #5

Hello World #7

Hello World #9

(Only five iterations)

/* Testl - Exanpl e Rexx Program - Rexx EXEC */
Do Forever

Say "Tell me your nane, or enter O to quit"

Pul | Answer

If Answer = "0" then Leave

Say "You told ne that your nane was" Answer”
End

The above Rexx exec will echo back whatever you typein, until you enter

azero:
You told ne that your nane was HOVER SI MPSON

Here is a common trap. After a do group completes, your index variable
will be one higher than the limit. In the following example, assume you are
traversing an array of records that you read in from a disk file, and that the
disk file contained 114 records.

Do CurrRecNO = 1 to IPRec. O
(processing..)
End

At this point, CurrRecNO will contain 115, and not 114.

Page [46]

Drop

Purpose: "Unassign" avariable. This, in effect, converts a variable name to aliteral
(in upper case).

Type: Rexx Instruction

Example: The following excerpt from a Rexx exec:
Geeting = "Merry Chri st mas”
Say Geeting
Drop Greeting
Say G eeting

Will yield the following results:
Merry Chri st mas
GREETI NG

Page [47]

D2C

Purpose: Convert adecimal number to a character.

Type: Rexx Function

Syntax: Result = D2C(number,length)

Usage: Convert the decimal number to its internal hexadecimal format. It isthe
inverse of C2D.

Number must be a whole number or a variable containing a whole number.
It must also be non-negative, unless length is specified.

Length isthe length of the result, and is optional. If Length is not specified,
Result will be left-zero-suppressed. If Number is negative, then Length is

required.
Example: The expression displays
Say D2C(240) 0 (X F0")
Say D2C(240,5) O (right justified in a 5-
byte field)
Say D2C(80) & (X 50)

Page [48]

D2X

Purpose: Convert adecimal number to a hexadecimal value.

Type: Rexx Function

Syntax: Result = D2X (number,length)

Usage: Convert adecima number to its hexadecimal representation. It isthe
inverse of X2D.

Length- Length of the fina result, in characters (optional)

Example: The expression displays
Say D2X(240) FO
Say D2C(80) 50

Page [49]

End

Purpose: Terminate a"DO" loop or block.

See the documentation on Do for more detailed information.

Page [50]

ErrorText

Purpose: Thisisa REXX built-in function that will return the English language text

Type:

Syntax:

Usage:

Exampl

for an error code.
Rexx Function

Say ErrorText(RC)
where RC isthe error code. Error codes are set by al Rexx errors.

To report back to the user, in English, what the problem is.

€
/* Testl - Exanpl e Rexx Program - Rexx EXEC */
Dol =1to 20
Say "Error "I" is "errortext(l)
End
The above Rexx exec will display the following outpuit:
Error 1is
Error 2 is
Error 3 is Programis unreadable
Error 4 is Programinterrupted
Error 5 is Machine storage exhausted
Error 6 is Unmatched "/*" or quote
Error 7 is WHEN or OTHERW SE expect ed
Error 8 is Unexpected THEN or ELSE
Error 9 is Unexpected WHEN or OTHERW SE
Error 10 is Unexpected or unmatched END
Error 11 is Control stack full
Error 12 is O ause too |ong
Error 13 is Invalid character in program
Error 14 is Inconplete DO SELECT/IF
Error 15 is Invalid hexadecimal or binary string
Error 16 is Label not found
Error 17 is Unexpected PROCEDURE
Error 18 is THEN expected
Error 19 is String or synmbol expected
Error 20 is Synbol expected

Page [51]

Execl O

Purpose: Perform input/output operations.
Type: TSO Command
Syntax: "EXECIO quantity operation ddname seq (options’
where
guantity represents the number of records to read or write
operation DiskR for "read from disk"
DiskW for "write to disk"
DiskRU for "read for update"
ddname The ddname of the file for which I/O isto be performed.
The file must be allocated by TSO prior to its use.
seq Sequence number of the desired record, for disk read
operations only
options STEM stem. FINIS
STEM is specified when reading records from or writing records to
an array. stemisthe "name" of the array. If STEM is not specified,
operations are performed on a disk file instead of an array.
Specify FINIS to close a disk file when done processing
Usage: If you perform a disk read operation, and you reach end-of-file, RC will be
settoa?2.
Examples:
Read Write Ex # | Comments
Disk TSO Stack |1 Read a disk file into the TSO stack
Disk Array 2 Read a disk file into an array
TSO Stack | Array 3 Read the TSO stack into an array
TSO Stack | Disk 4 Read the TSO stack, write adisk file
Array Disk 5 Read an array, write adisk file
Array TSO Stack | 6 Read an array into the TSO stack
Disk Disk N/A | Read one disk file; write another:
1) Read disk fileinto array
2) Write array to disk file
Disk Disk 7 Copy adisk file, one record at atime
Disk Disk 8 Disk update (update arecord in place)
Array Array 9 Copy one array to another
TSO Stack | TSO Stack | N/A | (Only one TSO stack is available)

Page [52]

Example1l: Read adisk fileintothe TSO stack

“Alloc fi(DDIn) Da(user.work) shr”
NewSt ack
"ExeclO * DiskR DDIn (Finis "
"Free Fi (DDIn)"
And then, to process the stack:
Do while queued() > 0

Pul I OneLi ne

Say OnelLi ne
End
Caution: If you read information into the stack, and then leave it there, whether

intentionally or by an error in your Rexx exec, TSO will try to execute it.

Example2: Read adisk fileinto an array
"Alloc fi(DDIn) Da(Rexx.exec(TestData)) shr"
"ExeclO* DiskR DDIn (StemLines. Finis "
"Free Fi (DDIn)"

And then, to process the array:

Say "The disk file contains " Lines.0 "lines. Here they
are:"
Dol =1to Lines.O
Say Lines.|
End

Example3: Read the TSO stack into an array

/* If the queue is enpty, say so and get out */
I f queued() < 1 then do

say "The TSO stack is enmpty!™

Exit 16
End
/* Now read the stack into an array */
Li nes. 0 = queued()
Dol =1 to queued()

Pul | NewLi ne

Li nes.l = NewlLine
End

And then, to process the array:

Dol =1 to Lines.O
Say Lines. |

End

Example 4: Writethe TSO stack to disk

I f queued() > O then do

"Alloc Fi (DDQut) da(work.data(test2)) shr™”

"Execl O * DiskwDDQut (Finis "

"Free Fi (DDQut)"
End
El se

Say "The queue was enpty; no file witten!"

Example 5: Writean array to disk

Page [53]

"Alloc Fi (DDQut) da(work.data(test3)) shr”
"Execl O * DiskwDDQut (Stem Recds. Finis "
"Free Fi (DDQut)"

Example 6: Read an array into the TSO stack
"Al'loc Fi (DDl n) da(work.data(testl1l)) shr”
"ExeclO* DiskRDDIn (Finis "
"Free Fi (DDIn)"
Say "l read "queued()" records into the TSO stack"
Del St ack /* Delete this stack when done */

Example 7: Copy a disk file, onerecord at atime
"Alloc Fi(DDIn) da(work.data(testl1)) shr"
"Alloc Fi (DDQut) da(work.data(test6)) shr™”
RecsCopied = 0

Do Forever

"Execl O 1 Di skR DDI n" /* Read a disk record*/

If RC =0 then do /* Not end of file */
"Execl O 1 Di skwW DDQut " /* Wite a disk rec */
RecsCopi ed = RecsCopied + 1 /* Count the records copied */

End

El se Do /* End of file */
"ExeclO 0 DiskR DDIn (Finis" /* Close the input file */
"Execl O 0 DiskwDDQut (Finis" /* Close the output file */
Leave

End

End

"Free Fi (DDl n, DDQut)"
Say "1 copied "RecsCopi ed" records”

Example 8. Disk Update (update arecord in place)
Thisis accomplished by reading a disk record (for update) into the stack, removing it from
the stack into a variable, modifying it (in the variable), putting it back into the stack, and

then writing the record back to disk, from the stack.
"Alloc Fi (DDUp) da(work.data(testl)) O.D

"NewSt ack" /* Establish a new stack */
RecsUpdated = 0

"ExeclO 1 DiskRU DDUp 4 " /* Read record number 4 */
Pull Record /* Read stack */
Say "Record nunber 4 is" Record

Record = left(Record, 10)||"* this asterisk is in colum 11"

Say "The record was changed to:" Record

Push Record /* Put it back into the stack*/
"Execl O 1 D skw DDUp " /* Wite the record back */
RecsUpdat ed = RecsUpdated + 1

"Execl O 0 Di skwW DDUp (Finis" /* Close the I/Ofile */
"Free Fi (DDUp)"

"Del Stack" /* Delete the new stack */

Say "l updated "RecsUpdated" records”

Example 9: Copy one array to another
"Alloc Fi(DDin) da(work.data(testl)) SHR
RecsCopied = 0
"ExeclO* DiskR DDin (stemRecs. Finis)" /* Read the disk into array */
Say "There are "Recs.0" records in the Recs array"”
"Free fi(DDIn)"
Dol =1to Recs.0

Page [54]

Recs2.1 = Recs. |
End
Recs2.0 = Recs. 0
Say "There are "Recs2.0" records in the Recs2 array”
Dol =1 to Recs2.0
Say Recs2. |
End

Page [55]

Purpose:

Type:

Syntax:

Usage:

Example:

Exit
Terminate a Rexx exec, and optionally set a return code.
Rexx Instruction

Exit ReturnCode
where ReturnCode is any code you wish to set.

Typicaly, the Exit instruction is coded at the end of a Rexx exec's
processing, but it can indeed be used to prematurely terminate a Rexx exec.
ReturnCode is the MV S return code, and can be tested by a calling
program (another Rexx exec, for example), or by JCL.

To check for charcter strings instead of words, use I ndex.

Exit 16 [* Tell the caller | failed */
Exit O /* Tell the caller | processed ok */

Page [56]

Purpose:
Syntax:

Usage:

Example:

Expose
Make aloca variable available to an external routine
PROCEDURE EXPOSE variable

Typically, when an exec calls a procedure, it passes to the procedure all of
the necessary values. The procedure, by rules of good coding, hides all of
its local variables (by using the "Procedure” statement. If the procedure
wants to pass one of those variables back, it can smply "Expose" the
variable.

Thisis an example of a program that will calculate a bowling average for a

five-game tournament.

/* Testl - Exanpl e Rexx Program */
Call GA 157 202 170 160 144

Say "Your bowling average is " Result
Say "Your high gane was " H ghGane
Say "Your |low gane was " LowGane

Exi t

GA:
Procedure Expose H ghGane LowGane
Arg Ganel Gane2 Gane3 Gane4 Ganeb5
Total = Ganel + Gane2 + Gane3 + Gane4 + Ganeb

Bowl Average = Total / 5

H ghGame = 0

If H ghGame < Ganel then H ghGane = Ganel
If H ghGame < Gane2 then H ghGane = Gane2
If H ghGame < Gane3 then H ghGane = Gane3
If H ghGame < Gane4 then H ghGane = Gane4
If H ghGame < Gane5 then H ghGane = Ganeb
LowGanme = 300

I f LowGane > Ganel then LowGane = Ganel

I f LowGane > Gane2 then LowGane = Gane2

I f LowGane > Gane3 then LowGane = Gane3
If LowGane > Gane4 then LowGane = Gane4

I f LowGane > Gane5 then LowGane = Ganeb5

Ret urn Bowl Aver age
In the above example, thefirst lineisa Call to procedure "GA". It passes
five bowling scores.

The first thing that procedure "GA" does, is make the variables HighGame
and LowGame available to the caller, by Exposing them. Note that if the
entire Procedure statement was removed, al of the variables would be
available. In larger programs, that could be a problem.

Page [57]

External

Purpose: Extract the number of terminal buffer or command stack elements that have
been logically typed ahead by the terminal user.

See PARSE EXTERNAL for documentation on this subject.

Page [58]

Find

Purpose: Return the position of aword/words in a sentence
Type: Rexx Function
Syntax: Result = FIND(sentence,words)

where result is the word number where words appears in sentence. Result
is O if words does not appear (as actual words) in sentence. (By definition,
"word" is a character string enclosed by delimiters.)

Examples:
Position = FIND(' Fourscore and seven years ago','years')

will result in 4. yearsis the fourth word in the sentence.

FI ND(' Four scor eandsevenyear sago', ' years')
will result in 0. years does not appear as aword in the sentence.
(The sentence contains only one word.)

Posi tion

Say FIND('Fourscore and seven years ago','and seven')
will result in 2.

Page [59]

Form

Purpose: Returns the current setting of "Numeric Form".

Type: Rexx Function

Syntax: Curr Setting = Form()
where CurrSetting will contain either "SCIENTIFIC" or
"ENGINEERING"

See also Numeric Form for documentation on this function.

Page [60]

Purpose:

Type:

Syntax:

Usage:

Example:

Format

To print a number
Rexx Function

Result = Format(number | eft-of-decimal ,right-of-decimal)

where Result is the formatted representation of number. | eft-of-decimal
denotes how many digits to display on the left side of the decimal point,
padded with blanks. right-of-decimal denotes how many decimal digits to
display on the right side of the decimal point, zero-filled.

This function is used to display numbers so they line up with others being
displayed, or to display a number in a certain way.

/* Testl - Exanpl e Rexx Program - Rexx EXEC */
Say "How nmuch noney did you have yesterday?”
Pul | YAmount

Say "How nmuch noney do you have now?"

Pul | NAnmount

D ff = NAnmount - YAnount
If Diff >0 then D ffWrd
el se Di ffword
Diff = ABS(Diff)

Say "Yesterday, you had $" Fornmat (YAnount, 4, 2)
Say " Now, you have $" For nat (NAnount, 4, 2)
Say "You "Diffwrd" $" Format (Diff, 4, 2)

" @i ned"
"*Lost*"

In the above example, when the Rexx exec asked:
How much noney did you have yesterday?
And you answered: 2

And then the Rexx exec asked:
How much noney do you have now?

And then you answered: 1.5

The Rexx exec would display:

Yest erday, you had $ 2.00
Now, you have $ 11.50

You *Lost* $ 9.50

Notice how the amounts line up. Without the formatting provided by the

Format function, Rexx would display the following:
Yest erday, you had $2

Now, you have $11.5
You Gai ned $9.5

Page [61]

Fuzz

Purpose: Returns the current setting of "Numeric Fuzz".
Type: Rexx Function
Usage: Thisisan inquiry as to this setting: how many low-order digits Rexx should

ignore in comparisons.

See Numeric Fuzz for documentation on this function.

Page [62]

Purpose:

Type:

Syntax:

Expression:

Examples:

Comparing
strings:

| f

Test for certain conditions (via program expressions), alowing action to be
taken based on the results of the test.

Rexx Instruction

|F expression THEN If expression THEN DO
instruction one or more instructions
ELSE END
instruction ELSE DO

one or more instructions
END

Any valid program expression. If the statement is TRUE, the expression
evaluates to a one. Conversdly, if the expression is false, the expression
evaluates to a zero. Rexx uses that value to determine whether it should
execute the "THEN" instructions, or the "ELSE" instructions.

The operators that can be used in an expression follow:

> is greater than

< isless than

= \= <> isnot equa

= equa: numericaly equivalent;
equivaent when padded with blanks

== strictly equal: exactly the same

The following statements are

TRUE FALSE

1 <2 1>2

2>1 2 <1

3 <>4 4 <> 4

"5pb" = "5" "5b" = = "5" (b represents a space)
.02 = 0.02 .02 = =0.02

Do NOT use"If >" to compare strings. Before a compare is done, high-

order blanks are removed. Therefore, the following statement
If " C4" < "BB3"

will result in false.

Page [63]

Y ou can use the Compare function to compare strings, but only for
equality or inequality. To compare the value of strings, convert each
character with C2D first, asfollows:

Do N =1 to | ength(d dKey)
If C2D(substr (A dKey, N, 1)) < C2D(substr(NewKey, N, 1)) then

Leave
If C2D(substr (A dKey, N, 1)) > C2D(substr(NewKey, N, 1)) then
Do
Say "The input file is out of sequence!™
Exi t
End

End

Page [64]

|f, Compound

Purpose: To allow more than one expression in an "IF" statement.
Type: Rexx Instruction
Syntax: If expression bo expression bo expression...

Where:

expression is as defined above
bo is a Boolean operator.

Boolean
operator: & All expressions are true
| At least one expression is true. (You must use the "OR" bar; you
cannot use the word "OR"
&& Only one of two expressions s true, and not both
Examples:

If nonth = "DECEMBER' | nonth = "JANUARY" | ,
nont h =" FEBRUARY" t hen
season = "W NTER'

Candi dateA = "I ncunbent”
Candi dateB = "I ncunbent”
I f Candi dateA = "I ncunbent” && ,
Candi dateB = "I ncunbent” then
Say "lnput is okay"
El se

Say "Dunmy! They can't both be incunbents!”
The previous excerpt of code will call you a dummy, because you told the
program that both candidates were incumbents.

Page [65]

Purpose:

Type:

Syntax:

Exanpl e:

If-Then-Do
Execute one or more instructions one time based on some condition.
Rexx Instruction

IF expression THEN DO
END
where expression is any valid Rexx expression.

If A =B then do
(one or nore instructions)
End

Inthisexample, one or nore instructions isexecuted only if A
=B.

Page [66]

Purpose:

Type:

Syntax:

Note:

Examples:

| ndex
Return the position of a character string in another
Rexx Function
Result = INDEX (object, source)
where result is the position number where sour ce appears in object. Result

is O if source does not appear in object.

Index differs from Pos in that object and source are in opposite sequence
in the command.

Say | ndex(' Fourscore and seven years ago','and seven')
will return "11".

Say | ndex(' Fourscoreandsevenyearsago',' andseven')
will return "10".

Page [67]

Purpose:

Type:

Syntax:

Examples:

Insert

Copy astring into another string.
Rexx Function

Result-string = INSERT (new-string,old-string,where)

where result-string is the string that will contain the old-string with the
new-string inserted into it. new-string will be inserted into old-string after
the where position.

If whereis greater than the length of old-string, then old-string wil be
padded with enough blanks to accomodate the insertion operation.

Say Insert("Apple","Wrni, 2)

Will result in
WHAppl erm

Say Insert("Apple","Wrn',7)

Will result in
Wrm Apple

(There are three spaces between "Worm" and "Apple").

Page [68]

Purpose:

Type:

Syntax:

Usage:

Example:

Interpret

To make Rexx process an expression as an instruction; that is, execute
instructions that have been built dynamically.

Rexx Instruction

INTERPRET expressionl expression? ...

Thisis one of those highly esoteric Rexx functions. | have never had a need
for thisinstruction (which is not to say a person never will).

1 Instr = "Say"
2 Var = "Hello Wrld"
3 Instr Var
4 Interpret Instr Var
Line 1 issmply setting the variable Instr to the character string " Say".
Line 2 issmply setting the variable var to the character string "Hello
World".
Line 3 is being passed to TSO by Rexx, and the result is as follows:
COMVAND SAY NOT FOUND
4 *-* |nstr Var
+++ RC(-3) +++
Line 4 tells Rexx not to pass these commands on to TSO, asit did with line

3, but to execute them instead. Theresult is:
HELLO WORLD

Page [69]

Purpose:

Type:

Syntax:

Usage:

Exanpl e:

|terate

Pass through the remainder of the instructionsin a"DO" loop without
executing them.

Rexx Intruction

IF expression THEN ITERATE
where expression is any valid Rexx expression.

Thisis used to "skip" the remainder of a Do group.

/* Testl - Exanpl e Rexx Program - Rexx EXEC */
Say "Please tell ne your nane"
Pul | Your Nane

Dol =1 to | ength(Yournane)

If I =1 then iterate
Say "The "1"th letter of your nane is "I
End

The above example will print every letter of the name the user typesin,
except the first.

See the documentation on Do for more detailed information.

Page [70]

Justify

Purpose: Justify a string to both margins.

Type:

Rexx Function

Syntax: NewString = JUSTIFY (string,length)
where NewS3ring is the newly-created justified string; string is the
character string being justified, and length is the length of NewString.

Usage:

A new string is created by justifying the old string to both margins, and

adding blanks between words.

If the specified length is less than the string, then the new string will be
truncated on the right. Note that this should be viewed only as aside-
effect, and not used purposely. Use the LEFT function instead when thisis

the desired effect.

If there is only one word in the string being justified, it will be justified on

the left.

Examples:

The following excerpt from a Rexx exec:

NewString = JUSTIFY('Hello, world! I amterrific!’

Say NewString

will result in NewString containing the following:
Hello, world! I amterrific!

within a 30-character field.

The following excerpt from a Rexx exec:

NewString = JUSTIFY('Hello, world! I amterrific!’

Say NewString

will result in NewString containing the following:
Hel | o, wor

Notice that only 10 positions were kept.

Page [71]

» 30)

, 10)

Labels

Purpose: To provide atarget for the "Signa” instruction.
Syntax: A label isimmediately followed by a colon, with no intervening spaces.
Example:

Endi t:

Exi t

In the above example, "Endit" is alabel.

Page [72]

Purpose:

Type:

Syntax:

Examples:

L astPos

Return the position of the last occurrence of one string within another.
Rexx Function

Position = LA STPOS(find-string,tar get-string)
Where position is the position number of the last occurrence of find-string
within target-string.

The following Rexx exec:

XMasG eeting = "W wi sh you a Merry Chri st mas”
Jingle = XMasGreeting || XmasG eeting ||
XMasG eet i ng

gle || "And a Happy New Year!"

Jingle = Jin
= LASTPOS(" Chri st nas", Ji ngl e)

Position
Say Position

will display "79".

XMasGreeting appears 3 timesin Jingle (and is 29 chracters long). The

last occurrence of the word "Christmas" appears in the 79th position of
Jingle.

Page [73]

Purpose:

Type:

Syntax:

Usage:

Example:

L eave
Prematurely exit from a"DO" loop.
Rexx Instruction
(None)

“Do loops’ can be written in a number of different ways. The example
below illustrates just one of those ways. In this particular example, the only
graceful way of exiting is by use of the Leave instruction.

/* Testl - Exanpl e Rexx Program - Rexx EXEC */
Do Forever

Say "Tell me your nane, or enter O to quit"

Pul | Answer

If Answer = "0" then Leave

Say "You told ne that your nanme was" Answer”
End

The above Rexx exec will echo back whatever you typein, until you enter
azero.

Page [74]

L eft

Purpose: Return the left "n" positions of a string.
Type: Rexx Function
Syntax: NewString = LEFT (oldstring,quantity)

Where NewString is the leftmost quantityth positions of oldstring

Example: In the following code,
First8 = LEFT("ABCDEFGHI JKLM\", 8)

First8 will contain "TABCDEFGH"

See Also: Right

Page [75]

Length

Purpose: Return the length of aliteral, string, or string variable

Type: Rexx Function

Syntax: Answer = LENGTH(variable)

Usage: Thisis aRexx built-in function that will return the length of aliteral, string,

or string variable.

Example:
Answer = length("Merry Christnmas and Happy New Year")
Say Answer

Would display
34

Page [76]

LineSize

Purpose: Thisis aRexx built-in function that will return the terminal line width
minus 1.

Type: Rexx Function

Syntax: Result = LineSiz()

Usage: Thisis an inquiry-only function, and will usualy return "79".

Page [77]

Purpose:

Type:

Syntax:

Usage:

ListDSI

Retrieve information about a TSO dataset.

TSO external function

LISTDSI(datasetname directory)
or
LISTDSI(filename type directory)

datasetname- the name of the data set about which you want information.
directory- an option that indicates whether or not you want PDS directory
information returned.
DIRECTORY - return directory information. Note that this option
must be specified if you want the PDS-specific variables below to
contain the desired information (SY SADirBIk, for example).
NODIRECTORY - Do not return directory information. Thisis the
defaullt.
filename isthe DD name if you pre-allocated the file

type Specify 'FILE' if the first operand isa DDName instead of a
datasetname

This function will retrieve information about a dataset, and put it into
variables.

The function is said to succeed if it can access the desired dataset
information, and fail if it cannot. The function in reality does not fail,
however, because if the dataset cannot be allocated, LISTDSI sets three
variables that say why.

If the function succeeds, the return code is set to zero, and

certain variables are set:

SYSADIrBlIk For aPDS, thisvalue will contain the number of directory
blocks allocated. For a PDSE or sequential dataset, this
value will be blank.

SYSALLOC Total space alocation

SYSBLKSize Block size of the dataset

SY SBLKSTrk Blocks per track for the unit that thisfileison

SYSCreate Date the dataset was initialy created; julian
date format: yyyy/ddd

SY SDSName Fully-qualified datasetname

SYSDSorg DSORG of the dataset

Page [78]

SYSExDate Expiration date of dataset. O, if there is none.

SY SExtents Number of extents used

SYSKEYLEN Key length. O for non-keyed datasets

SYSLRECL Logica record length

SY SMembers Number of membersin the PDS. Thisvaue
isblank for PDSE's.

SY SPassword The password assigned to the dataset, or
"NONE"

SYSPrimary Primary space alocation quantity

SYSRACFA Leve of RACF protection. Possible values
are"NONE", "GENERIC", and
"DISCRETE"

SYSRECFM Record format of dataset

SYSRefDate Date the dataset was last referenced; julian
date format: yyyy/ddd

SY SSeconds Secondary space allocation

SYSTrksCyl The number of tracks per cylinder on the
volume on which this dataset resides
SY SUDiIrBIk. For aPDS, this value will contain the
number of directory blocks used

SY SUnit Generic unit of the volume, such as "3390" SY SUnits
Units of alocation: "TRACK", "BLOCK",
"CYLINDER", etc

SYSUpdated Whether the dataset was ever updated:
"YES' or "NO"

SYSUSED Current space utilization: quantity of
"SY SUnits" above. "N/A" for PDSE's

SYSVolume The volume serid number on which this
dataset resides

If the LISTDSI function fails, the return code is set to 16, and certain other
variables are set:

SYSMSGLVL1 Primary, or generic error message

SYSMSGLVL2 Specific error message

SY SReason An error number

Page [79]

Examples: Consider the following Rexx Exec:

/* Testl - Exanpl e Rexx Program - Rexx EXEC */

RC = listdsi (junk. data)

If RC =0 then do
Say "Allocation was successful.”
Say " SYSAD r Bl k=" SYSADI r Bl k
Say " SYSALLOC="SYSALLCC
Say " SYSBLKSI ZE=" SYSBLKSI ZE
Say " SYSCreat e="SYSCr eat e
Say " SYSDSor g=" SYSDSCOr g
Say " SYSDSName=" SYSDSNane
Say " SYSExt ent s=" SYSExtents
Say " SYSExDat e=" SySExDat e
Say " SYSKEYLEN=" SYSKEYLEN
Say " SYSLRECL="SYSLRECL
Say " SYSMenber s=" SYSMenber s
Say " SYSPasswor d=" SYSPassword
Say " SYSPri mary="SYSPri mary
Say " SYSRef Dat e=" SYSRef Dat e
Say " SYSRACFA=" SYSRACFA
Say " SYSRECFM=" SYSRECFM
Say " SYSSeconds="SYSSeconds
Say " SYSTrksCyl =" SYSTr ksCyl
Say " SYSUnit ="SYSUni t
Say "SYSUnits="SYSUnits
Say " SYSUpdat ed="SYSUpdat ed
Say " SYSUSED=" SYSUSED
Say " SYSVol ume=" SYSVol une

End

El se do
Say "Return code = " RC
Say " SYSReason="SYSReason
Say " SYSMSGLVL1="SYSMsgLvl 1
Say " SYSMSGLVL2="SYSMsgLvl 2

End

Using the above exec, | performed a LISTDSI on an existing PDS, and the

Rexx exec reported as follows:
Al |l ocati on was successful .
SYSAD r Bl k=

SYSALLOC=15

SYSBLKSI ZE=32720

SYSCr eat e=1997/ 104
SYSDSor g=PO
SYSDSNane=DGRUND. WORK. DATA
SYSExt ent s=1

SYSExDat e=0

SYSKEYLEN=0

SYSLRECL=80

SYSMenber s=

SYSPasswor d=NONE

SYSPri mary=15

SYSRef Dat e=1997/ 107
SYSRACFA=GENERI C
SYSRECFM=FB

SYSSeconds=1

SYSTr ksCyl =15

SYSUni t =3390

Page [80]

SYSUni t s=TRACK
SYSUpdat ed=YES
SYSUSED=N A
SYSVol une=PCF011

Using the same exec, | performed aLISTDSI on an non-existent PDS, and

the Rexx exec reported as follows:
Return code = 16
SYSReason=0005

SYSMSGLVL1=| KI584001 LI STDSI FAILED. SEE REASON CCDE | N VAR ABLE
SYSREASON.

SYSMSGELVL2=| KI584051 DATA SET NOT CATALOGUED. THE LOCATE MACRO RETURN
CODE |'S 0008

Page [81]

Purpose:

Usage:

Literals

Literals exist so variables can represent an unchanging value.
Rexx supports literals of a number of different types.

Typicaly, alitera is onethat is enclosed by either a set of quotation marks
or apostrophes.

"HELLO WORLD" and

'HELLO WORLD' represent the same character string.

Literals can be numeric, character, hexadecimal, and binary. "FOUR" isa
character literal; "4" isanumeric literal.

Thereason | say "typicaly", is because that is not always the case. (Thisis
probably one of my biggest complaints about Rexx. | feel that if it was
more stringent, it would be easier to figure out and explain.)

- A character literal doesn't have to be enclosed. If it isn', it is changed to
all upper case.

- A character literal that is not enclosed can be converted to a variable by
using it on the left side in an assignment statement. (Y ou will get a syntax
error if you try to assign alitera that is enclosed).

Consider this example. The following excerpt is from a Rexx Exec:

Say "Hello, Wrld" /* Character string */
Say Hello World /* Two literals */
Wrld = "Dave" /* Make "World" a variable */

Say Hello Wrld

will yield the following results:
Hell o, World

HELLO WORLD

HELLO Dave

A good rule of thumb to follow is aways enclose literals. That way, if a
character string appears in your output, you can bet it's an (uninitialized)
unused variable.

Page [82]

L ogical Operators
REXX supports the following logical (Boolean) comparison operators:

& AND - returnsal (true) if both comparisons are true, and a O (false) otherwise -
performs alogical AND operation

| OR -returnsal (true) if at least one comparison of several istrue, and a0 (false)
otherwise - performs alogical or operation

&& EXCLUSIVEOR - returnsal (true) if ONLY one of agroup of comparisonsis
true, and a 0 (false) otherwise - performs alogical exclusive OR function

\ NOT - returns the reverse logical value for an expression - returns false if expression
resolvesto true, and true if the rexpression resolvesto false

Page [83]

Math

Rexx performs math whenever it can recognize arithmetic operators. The valid
Rexx operators are as follows:

Operator | Function

+ Add

- Subtract

* Multiply

/ Divide

% integer divide

Il remainder of divison

*x Exponentiation

() group items

Usage
The primary operations (+, -, *, /) are obvious, so not much further discussionis

needed here.
%- Integer
Divide Any remainder is dropped
/I- Remainder
of Divison Yieldsthe remainder in adivision expression.

The following excerpt from a Rexx exec:
"EXECI O' 1 "Di skW Sysur2"
OpCount = OpCount + 1
If OpCount // 1000 = 0 then
Say OpCount "records witten so far..."

will print a message line for every 1000th record written. This, of courseg, is
useful in along-running program.

**. Exponentation

()

Operations within expressions to make them take precedence over normal
precedence.

Page [84]

M ax

Function: Return the highest of a series of numbers.
Type: Rexx Function

Syntax: HighNum = MAX(num1, num2...)

Usage: A maximum of 20 numbers can be provided.
Example:

Say Max(1,3,5,17,9,6,4)
will yield "17" (without the quotation marks)

Min
Purpose: Return the lowest of a series of numbers.
Type: Rexx Function
Syntax: LowNum = MIN(num1, num2...)
Usage: A maximum of 20 numbers can be provided.
Example:

Say Mn(8,3,5,17,9, 6, 4)
will yield "3" (without the quotation marks)

Page [85]

Purpose:

Type:

Syntax:

Usage:

Example 1:

Example 2:

Msg
Change or inquire as to the current TSO "M SG" setting.
TSO externa function

Setting = M SG(on/off)

where setting is the current setting, before it is changed by what isin the
parentheses,

on/off iseither "ON", "OFF", or nothing.

The TSO "MSG" setting indicates whether TSO messages are printed
during the execution of a Rexx exec or not. Specify the command with
"ON" to turn message displays on, "OFF" to turn message displays off, and
anull parameter (just the parentheses with nothing in them) to display the
current setting.

In the following example,
1 Say Msg()

2 Msetting = Msg(Off)
3 Say Msetting

4 Say Msg()

1 will display the current TSO message setting, either "ON" or "OFF"

2 will capture the current TSO MSG setting into the variable MSetting, and
then set the setting to "OFF", regardless of what it was

3 will display the variable MSetting

4 will display the new current setting, which will be "OFF"

In the following example,

1 Say Msg()

2 Say "About to allocate the first tinme..."
3 "Allocate FI(dunmy) DA(junk2.data) shr”

4 Junk = Msg(Off)

5 Say "About to allocate the second tine..."
6 "Allocate FI(dunmy) DA(junk2.data) shr”

1 will display the current TSO message setting, either "ON" or "OFF"

2 tells the user that we are about to issue a TSO command

3 dlocates thefile, if possible

4 turns the MSG setting of f

5 tells the user again that we are about to issue a TSO command

6 allocates the file again, if possible

The dataset junk2.data does not exist, so each attempt at allocating it will
fail. Line 3 above will issue a message because the TSO M SG setting is on.
Line 6 above would have issued a TSO message, but the TSO MSG setting
was off.

Page [86]

Purpose:

Type:

Syntax:

Usage:

See als0:

NewStack
Establish anew TSO stack
TSO command

NewStack

To tell Rexx that from here on, all stack operations are to be conducted on
a newly-established TSO stack, instead of the one that existed when the
instruction started. The "old" stack is left alone and unharmed by further
operation, until a DelStack isissued to discard this newly-established stack.

DelStack

Page [87]

NOP

Purpose: No operation

Type: Rexx instruction

Syntax: NOP

Usage: Allow you to use an instruction that performs no action in a place where an

instruction (of any kind) is required.

Example: The following example is coded this way to avoid complicated negative

logic.
If A=1] A= 2 then

Nop /* do nothing */
El se

Say "answer was incorrect”

Page [88]

Numeric

Purpose: Set certain rules for Rexx's handling of numbers. It controls the waya Rexx
exec carries out arithmetic operations.

Type: Rexx instruction

Syntax: Numeric function
Where function is either Digits, Form, or Fuzz.

Digits controls the precision to which arithmetic operations are eval uated.

Form directs which form of exponential notation Rexx uses of the result
of arithmetic operations

Fuzz controls how many digits, at full precision, are ignored during a
numeric comparison operation.

In many cases, these three functions work together to produce the desired

results.
Numeric Digits
Purpose: Controls the precision to which arithmetic operations are eval uated.
Syntax: Numeric Digits NoOfDigits

NoOfDigits- Defaultsto 9, and must be larger than the current
NUMERIC FUZZ setting. There is no practical limit to the
value for DIGITS, but keep in mind that higher values result
in added processing time.

Example: The following Rexx exec snippet:
Numeric Digits5; Say 1234.56 * 1
Numeric Digits4 ; Say 1234.56 * 1
Numeric Digits 3 ; Say 1234.56 * 1
Numeric Digits 2 ; Say 1234.56 * 1
Numeric Digits 1 ; Say 1234.56 * 1

Will produce:
1234.6

1235
1.23E+3
1.2E+3
1E+3

Page [89]

Purpose:

Syntax:

Example:

Numeric Form

Directs which form of exponential notation Rexx uses for the result of
arithmetic operations

Numeric Form mode

Where mode is either SCIENTIFIC or ENGINEERING

SCIENTIFIC notation adjusts the power of ten so there is a single non-
zero digit to the left of the decimal point.

ENGINEERING notation causes the power of ten to be expressed as a
multiple of 3.

The following Rexx exec snippet:
Numeric Digits 2

Numeric Form Scientific

Say 12345* 1

Numeric Form Engineering

Say 12345* 1

Will produce:

1.2E+2
120

Page [90]

Numeric Fuzz

Purpose: Controls how many (low-order) digits, at full precision, are ignored during
anumeric comparison operation. The exact way this function worksis
actualy dightly complicated.

Syntax: Numeric Fuzz Tolgnore
Tolgnore- Defaultsto O. It must be smaller than the current setting of
NUMERIC DIGITS.

Usage: During the numeric comparison, the numbers are subtracted under a
precision of DIGITS minus FUZZ digits, and the difference is then
compared to 0.

Examplel: Thefollowing Rexx exec snippet:
Valuel = 133456
Value2 = 123457

Numeric Digits 6

Numeric Fuzz 5

If Valuel = Vaue2 then Say "They are equal”
Else Say "They are NOT equa”

Will produce:

They are equa

Digits (6) minus Fuzz (5) equals 1. That is the number of digits from the
left that are compared. Since the first digit in each of Valuel and Vaue2
are identical, this comparison is true.

Example2: Thefollowing Rexx exec snippet:
Valuel = 133456
Value2 = 123457

Numeric Digits 6

Numeric Fuzz 5

If Valuel = Vaue2 then Say "They are equal”
Else Say "They are NOT equa”

Numeric Fuzz 4
If Valuel = Vaue2 then Say "They are equal”
Else Say "They are NOT equa”

Will produce:
They are equa

Page [91]

Digits (6) minus Fuzz (4) equals 2. That is the number of digits from the
left that are compared. The first two digits of Vauel (13) are compared to
the first two digits of Value2 (12). This comparison is obvioudy false.

Page [92]

Operators

Arithmetic Operators- See the subject entitled "Math"

Comparison Operators- See the subject entitled "Compare"
Logical Operators- See the subject entitled "Logical Operators®
Concatenation Operators- See the subject entitled "Concatenation”

REXX Operator Precedence
The following list shows order of precedence for ALL REXX operators:

1) Expressions in parenthesis are evaluated first

2) prefix operators==> -, +\

3) exponentiation ==> **

4) Multiplication and division in this order ==>* /,%.,//

5) Addition and Subtraction ==> + and -

6) concatenation ==> || or blank

7) comparison operators ==> === \==\=,>,<,>< >= <= \<\>
8) logical AND ==> &

9) logical OR and EXCLUSIVE OR ==> |, &&

Page [93]

Purpose:

Type:

Syntax:

Usage:

Example:

OutTrap
To turn on or off the capturing of TSO output.
TSO external function

ReturnCode = OUTTRAP(stem.,max)

ReturnCode = OUTTRAP('ON'/OFF)

where stem. is the name of the array into which the TSO output will be
built, and max is the maximum number of records that will be written. Note
that stem must end in a period. ReturnCode will be O if the function
succeeds.

OUTTRAP("ON"): Turn on capturing of TSO messages and output,
simply "swallow" it. Nothing wil be displayed at the terminal.
OUTTRAP("OFF"): Stop the capture of TSO messages and output, in
which case they will start being displayed at the terminal again.
OUTTRARP(stem.,max): Turn on capturing of TSO messages and output,
and write it all to an array named stem. max is the maximum number of
records that will be written. Specify "*" to process al records, although
that is the defaullt.

In the following example, we are trying to write all of the member names of
aPDSto an array. As a byproduct of the TSO command that we are using,
some unwanted information is written to the array as well.

Dunmmy = Qut Trap("output _line.","*")

"Ll STd work. data nt

NumLi nes = Qut Put _Line. 0

Say Nunlines "lines were created"
Dunmy = Qut Trap(" OFF")
Do | = 0 to NunLines

Say "Qutput_Line."1"="CQutput_Line.l
End

After execution of this exec, the array called Output_Line looks like this:
Qut put _Li ne. 0=8

Qut put _Li ne. 1=DGRUND. WORK. DATA

Qut put _Li ne. 2=- - RECFM LRECL- BLKSI ZE- DSORG
Qutput _Line.3= FB 80 32720 PO
Qut put _Li ne. 4=- - VOLUMES- -

Qut put _Li ne. 5= PCFO11

Qut put _Li ne. 6=- - MEMBERS- -

Qut put _Li ne. 7= PROX1

Qut put _Li ne. 8= PROX2

There are only two members in the PDS, but the array contains al of the
other output from the ListDS command. It's really ssimply to process

around it, though, like this:
Dol =7 to Qutput_Line.0

Page [94]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Example 2:

Overlay
Move characters over (on top of) other characters.
Rexx Function
NewString = OVERLAY (source,object,position)

This function replaces the characters in object with the charactersin
source, starting at position. If object isless than position, it is padded with
blanks.

Thisis what happens when you use the command the wrong way:
NewSt ri ng = OVERLAY("ABCDEFGHI JK',' X', 4)

Say Newstring

NewString will contain:

X ABCDEFGHI JK

The following example decides, based on the day of the week, whose turn
it isto make the coffee.

Say "Today is " Date(W

Cof f eeMaker = "Undeci ded” /* default */

If Date(W = "Monday" then CoffeeMaker = "d enda”
If Date(W = "Tuesday" then CoffeeMaker = "Alice"
If Date(W = "Wednesday" then CoffeelMaker = "Thont
If Date(W = "Thursday" then Cof feeMaker = ,
"Brucey"

If Date(W = "Friday" then CoffeeMaker = "Chuck"

Message = "The person in charge of making coffee
-> today is"

Position = | engt h(Message) + 2

Say OVERLAY(Cof f eemaker, Message, Posi tion)

Page [95]

Purpose:

Type:

Syntax:

Note:

Upper:

Action:

Par se

Take datafrom one of several origins, optionally break it up, and then drop
it into variables.

Rexx Instruction

PARSE [UPPER] origin varname delimiter varname delimiter...
UPPER- Converts the data to upper case. Thisis the default.
origin- Places where REXX can get the data from:
ARG- Command line
VAR- A vaiable
PULL- The TSO stack
SOURCE- TSOinfo on how the program was executed
VALUE- Literal
EXTERNAL- Termina
VERSION- Version of Rexx interpreter
varname- One or more variables
delimiter- Delimiters for parsing the origin data

The words "Parse Upper" are optional. When Rexx sees any of these
origins, it assumes "Parse Upper".

"Upper" isoptional, but it is the default. To not take the default, smply
specify "Parse" without the word "Upper".

Rexx will move variables one at atime from the implied origin into the
variables specified after the origin keyword.

If there are more origin parameters than variables, Rexx will put al of the
remaining parameters into the last variable. The last variable can be a
period, in which case extra origin parameters will ssimply be discarded. |
don't recommend this, however. Letting these drop into a variable would
not hurt. Y ou can always choose to ignore them, but the program will
require no modification here if you later choose to look at these
parameters.

If there are more variables than there are origin parameters, the variables
are set to spaces.

Delimiters break the input up and cause it to be processed separately, under
the guidelines specified above.

Page [96]

ARG:

VAR:

PULL:

SOURCE:

VALUE:

Take input from the command line. Thisis information that the user
supplied to the exec when entering the command. See examples EX01 and
EX02 below.

Take input from a variable. See example EX03 below.

Take input from the TSO stack. Use PULL to prompt the user for
information. (Whatever the user typesin is moved into the TSO stack.) See
example EX04 below.

Take input from information that the system (TSO) maintains about your
REXX program. It returns nine values. They are:

1. Operating System. In this case, it would be TSO.

2. How the program (Rexx exec) was caled. It will be either of
COMMAND, SUBROUTINE, or FUNCTION.

3. Name of the EXEC

4. DDName of command library; either SY SEXEC or SY SPROC

5. Datasetname containing the EXEC. It will be'? if the command was
invoked implicitly.

6. The name that the command was invoked by. It will be"?" if the
command was invoked implicitly.

7. Theinitial address environment; generally TSO, MVS, or ISPEXEC
8. Environment: TSO, MV'S, or ISPF

9. Reserved. Will be'?

See example EX05 below.

Take input from aliteral. This function can be used to parse things like the
current time. See example EX06 below.

EXTERNAL: Take input from the terminal.

varname:

Ddimiters;

Literal

Ddimiters;

Variable
Ddimiters;

One or more variable names
Delimiters to determine where origin datais divided. These delimiters can
be literas, variables, or column numbers.

Break input up at a specific character. See example EX03 below.

Break input up at a specific variable

Column number

Ddimiters;

Break input up under the control of column numbers.

Page [97]

Examples: | used the originsthat | did for the sake of clear explanation only. The
following examples apply to all of the origins.

In the following Rexx program,

/* EXO1 - REXX Exanple Program */

Parse Upper Arg Varl Var2 Var3 Var4 Var5

Say Varl ; Say Var2 ; Say Var3 ; Say Var4d ; Say Var5

If the command line read
Ex01 a bcde

Rexx would display

mooOmw>

If the command line read
Testl abcdef gh

Rexx would display

o0 w>

EFGH

If the command line read
Testl a b

Rexx would display
A

B
(with three blank lines following)

If the command line read
Test1l "My name i s Dave"

Rexx would display
" MY
NANVE

IS
DAVE"

(blank line)

In the following Rexx program,

/* Ex02 - REXX Test Program */

Parse Arg Varl Var2 Var3 Var4 Var5

Say Varl ; Say Var2 ; Say Var3 ; Say Vard ; Say Var5

If the command line read
EX02 a bc de

Rexx would display
a
b

Page [98]

o0

In the following Rexx program,

/* EX03 - REXX Test Program */

Parse upper arg dat aset nane

Parse var datasetname PDSNanme " (" MenNane ")" junk
Say "The command |ine paraneter was " Dataset Nane

Say "The PDSNane is " PDSNane

Say "The MenberNane is " MenNane

Say "The junk variable is " junk

If the command line read

EX03 user.session.jcl (copyfile)

Rexx would display

The conmand |ine paranmeter was USER SESSI ON. JCL(COPYFI LE)
The PDSName is USER. SESSI ON. JCL

The Menber Nane is COPYFI LE

In the following Rexx program,

/* EX04 - REXX Exanpl e Program */

Newst ack

Say "Please tell ne your first and | ast nane"
Pul | FirstNanme Last Nanme

Say "You told nme your first nane was" FirstNane
Say "You told ne your |ast nane was" Last Nanme
Del St ack

If the command line read
EX04
Rexx would display
Pl ease tell me your first and |ast name
And if you replied
Ceor ge Washi ngt on
Rexx would display
You told nme your first name was GEORGE
You told ne your last nanme was WASHI NGTON

In the following Rexx program,

/* EXO5 - REXX Exanpl e Program */
Par se Upper Source Stuff

Say Stuff

Rexx would display something like
TSO COMMAND EX05 SYSEXEC ? ? TSO | SPF ?

In the following Rexx program,

/* EX06 - REXX Exanpl e Program */

Parse Value Tinme() with Hrs ':' Mns ':' Secs
Say Hrs; Say Mns; Say Secs

If the time of day was 10:28:07, Rexx would display
10
28

Page [99]

07

/* EXO7 - REXX Exanpl e Program */
Parse Version Me
Say Me

would display something like the following:
REXX370 VERS 3.48 01 May 1992

Page [100]

Purpose:

Type:

Syntax:

Note:

Example:

Pos

Thisis aRexx built-in function that will allow you to determineif a
character is present in astring or variable, by returning its position in the
string.

Rexx Function

Position = POS(sour ce,object)
where position is the position of source within object. Position will be zero
if source does not apear in object.

Index differs from Pos in that object and source are in opposite sequence
in the command.

We will use the following Rexx exec for our examples:
/* Testl - Check for Coffeemakers - REXX exec */
Arg Person
Cof f eeakers = "GLENDA ALI CE THOM BRUCEY CHUCK
DAVE "
I f Pos(Person, Cof feemakers) > 0 then

say Person "is indeed one of our CoffeeMakers”
El se

say Person "does not drink coffee with us”

The following command:
Test1l Alice

will yield the following message:
ALICE i s i ndeed one of our CoffeeMakers

because POS contains 8

The following command:
Test 1 Randy

will yield the following message:
RANDY does not drink coffee with us

because POS contains O

The following command:
Test1l Al

will yield the following message:
AL is indeed one of our CoffeeNakers

Thisisan error, not in the Rexx exec, but in our usage of it. We are

checking only for the existence of the character string, and not whether that
charcter string is awhole word.

Page [101]

Procedure

Purpose: Establish that the current block of code is a Procedure, and thereby hide al
local variables

Type: Rexx Instruction

Syntax: PROCEDURE

Usage: This statement is needed only when you wish to hide the variables that

appear in the local block of code. You can then "unhide" some of them by
using the Expose function.

See Expose for more information.

Page [102]

Purpose:

Type:

Syntax:

Usage:

Example:

Prompt

Change the setting of, or inquire as to the current setting of the TSO
"Prompt" setting.

TSO external function

Answer = PROMPT("ON"|"OFF"|)

Rexx PROMPT functions only if the TSO PROFILE PROMPT setting is
"ON")as opposed to "PROFILE NOPROMPT").

The "ON" parameter will cause Rexx to allow TSO commands to prompt
for necessary information.

The"OFF" parameter will force TSO commands to bypass the normal step
of stopping and asking for missing information.

In both of the above cases, the function will first return the current setting.
The empty parameter will ssmply return the current setting.

The following exec is actually the same process run twice; once after
turning the TSO Profile Prompt setting ON, and once turning it off. During
each process, we will turn the Rexx Prompt setting on, issue the TSO
"Delete’ command, and then turn the Rexx Prompt setting off, and then
issue the same TSO delete command. If you get confused, just remember
that there is a difference bewteen the TSO Prompt command and the Rexx

Prompt function.

"Profile Pronpt™

Say "Here is the demo with the TSO pronpt ON'
Dunmmy = pronpt ("ON")

Say "Rexx Prompt is " pronpt()

"Newst ack"

Del et e

"Del stack"

Dunmy = pronpt (" OFF")

Say "Rexx Prompt is " pronpt()
"Newst ack"

Del ete

"Del stack"

"Profile NoPronpt"

Say "Here is the demo with the TSO pronpt OFF"
Dunmmmy = pronpt ("ON")

Say "Rexx Prompt is " pronpt()

"Newst ack"

Del et e

Page [103]

"Del st ack"

Dunmy = pronpt (" OFF")

Say "Rexx Prompt is " pronpt()
"Newst ack"

Del ete

"Del stack"

This exec will display:
Here is the deno with the TSO pronpt ON
Rexx Prompt is ON
ENTER ENTRY NAME -

At which point, the command waits for a datasetname to be entered. |
entered "A".

Continuing the display...

ERROR QUALI FYI NG GRUND. A

** DEFAULT SERVI CE ROUTI NE ERROR CODE 20, LOCATE
ERROR CODE 8

LASTCC=8

Rexx Prompt is OFF

M SSI NG ENTRY NAME+

LASTCC=12

M SSI NG ENTRYNAME TO BE DELETED, PASSWORD OPTI ONAL
Here is the deno with the TSO pronpt OFF

Rexx Prompt is ON

M SSI NG ENTRY NAME+

LASTCC=12

M SSI NG ENTRYNAME TO BE DELETED, PASSWORD OPTI ONAL
Rexx Prompt is OFF

M SSI NG ENTRY NAME+

LASTCC=12

M SSI NG ENTRYNAME TO BE DELETED, PASSWORD OPTI ONAL

In the above exec, | tried the following 4 scenarios.

TSO REXX Prompting
PROMPT PROMPT Occurred?
ON ON YES

ON OFF NO

OFF ON NO

OFF OFF NO

In each case where prompting did not occur, TSO went along its merry
way, trying to delete a dataset whose name wasn't supplied. Naturaly, it
falled.

Page [104]

Pull

Purpose: Get input from TSO

Type: Rexx Instruction
Syntax: Pull variablel variable?...
Usage: This command will first look at the TSO stack. If the TSO stack is empty,

the command will prompt the user.

Example:
1 NewsSt ack
2 Push "Hell o #1"
3 Pull Answerl

4 Say "l just |earned" Answerl
5 Pull Answer2

6 Say "l just |earned" Answer?2
In this example,

1 Establishes a new stack

2 Puts the phrase "Hello #1" onto the stack

3 Gets (and removes) that phrase from the stack

4 Displaysl just | earned HELLO #1

5 Prompts the user for more input, since the stack is now empty
6 Displays whatever the user just typed in.

See Par se and Stack for documentation on this function.

Page [105]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Example 2:

Push
Move data to the TSO stack.
Rexx Instruction
PUSH variablel variable? ...
Put things in the "input queue". This instruction worksin LIFO format: last
in, first out. It operates like a pile of platesin adiner. The plates put on top

push the others down, and the first ones pulled off are the last ones put on.
Queue does the same thing as Push, but in FIFO format.

1 NewSt ack

2 Say "l have "queued()" lines on the stack"”
3 Push "A" "B" "C'

4 Say "l have "queued()" lines on the stack"
5 Pull varl

6 Say "l pulled "Vvarl" off of the stack"

7 Say "l have "queued()" lines on the stack"

Line 1 established a brand new TSO stack to play with.

Line 2 tells us how many lines are on the stack. This should be "zero",
since we just started a new stack.

Line 3 pushed three variables (one line) onto the stack.

Line 4 again tells us how many lines are on the stack. This should be "one".
Lne 5 pulls those three variables off the stack, so now the stack again
contains zero lines.

Line 6 tells us the variables that the exec pulled off the stack

Line 7 again tells us how many lines are on the stack. This should be
"zero".

Newst ack

Say "l have "queued()" lines on the stack"
Push "A" "B" "C'

Push "D' "E' "F"

Say "l have "queued()" lines on the stack"
Pull varl

Say "I have "queued()" lines on the stack"
Say "I pulled "Varl" off of the stack"
Pull varl

Say "l pulled "Varl" off of the stack"

Say "I have "queued()" lines on the stack"

In this example, "A B C" is pushed onto the stack. Then "D E F"' are
pushed onto the stack. Since Push isa LIFO instruction, the program will
first pull "D E F' off the stack, then"A B C".

Page [106]

QStack

Purpose: Determine the number of data stacks currently in existence
Type: TSO Command

Syntax: QStack

Usage: To seeif the exec (or subroutines) had created any data stacks

See als0: NewStack, Del Stack

Example: The following Rexx exec snippet:
"QStack" /* Returnsalin RC */
saverc = RC [* Save the number of stacks*/
Say "The number of data stacksis" saverc
"NewStack" [* Create a new data stack */
"NewStack" [* Create a new data stack */
"QStack" /* Returnsa3in RC */
saverc = RC [* Save the number of stacks*/

Say "The number of data stacksis" saverc
Will display:

The number of data stacksis 1
The number of data stacksis 3

Page [107]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Queue
Move data to the TSO stack.
Rexx Instruction
Queue variablel variable? ...
Put things in the "input queue”. This instruction works in FIFO format:

Firstin, first out.
Push does the same thing as Queue, but in LIFO format.

1 NewSt ack

2 Say "l have "queued()" lines on the stack"”
3 Queue "A" "B" "C

4 Say "l have "queued()" lines on the stack"
5 Pull varl

6 Say "l pulled "Vvarl" off of the stack"

7 Say "l have "queued()" lines on the stack"”

Line 1 established a brand new TSO stack to play with.

Line 2 tells us how many lines are on the stack. This should be "zero",
since we just started a new stack.

Line 3 pushed three variables (one line) onto the stack.

Line 4 again tells us how many lines are on the stack. This should be "one".
Lne 5 pulls those three variables off the stack, so now the stack again
contains zero lines.

Line 6 tells us the variables that the exec pulled off the stack

Line 7 again tells us how many lines are on the stack. This should be
"zero".

Page [108]

Queued

Purpose: Thisis aRexx built-in function that will return the number of linesthat are
currently available in the TSO stack.

Type: Rexx Function
Syntax: NumOfLines = Queued()
Example:

I f Queued() > 0 then Del Stack
In the above example, if there are any lines on the TSO stack, we will
delete them.

Page [109]

Purpose:
Syntax:

Usage:

Quotation Marks/Apostrophes
To enclose aliteral (character string).

or
Literals are enclosed by a matched set of either apostrophes or quotation
mqus. They can be used interchangeably, but must be used in matched
pairs.

A character string containing apostrophes can be enclosed by quotation
marks, or vice-versa.

The Rexx instruction: Yields:
Say "Hello, it's nel™ Hello, it's ne!
Say 'Hello, it"s ne!’ Hello, it"s ne!

(Although the punctuation is incorrect)

A character string containing apostrophes can be enclosed by apostrophes
only if each of the contained apostrophes is represented by two.

The Rexx instruction: Yields:
Say 'Hello, it's ne!’ Error: unmatched quote
Say 'Hello, it''s me!" Hello, it's nel

The first example (enclosing apostrophes in quotation marks) is cleaner,
and is the recommended method.

Enclosing an expression causes Rexx to bypass the command, and pass it
right through to the environment; in our case, TSO.

Example:
"Say 'Hello, Wrld
Would display
COWAND SAY NOT FOUND
8 *-* "Say 'Hello'
+++ RC(-3) +++

Page [110]

Random

Purpose: Return a random number
Type: Rexx Function
Syntax: Pick = RANDOM (min,max,seed)

where pick is the number selected; min and max is the range of numbers,
inclusive, from which the function can pick; and seed is the random number

seed; it is optional.
Usage: This function will pick a number that is commonly referred to as pseudo-
random. Specifying the same seed will produce the same random number.
Random
Example: Thisis an example of an Exec that thinks it camn guess what the current
temperature is.
MoNum = substr(Date(U), 1, 2)
If Monum= 1 then Do; Low = ; High = 55; end
If Monum= 2 then Do; Low = 0; Hi gh = 60; end
I f Monum= 3 then Do; Low = 15; High = 65; end
I f Monum= 4 then Do; Low = 35; High = 80; end
If Monum= 5 then Do; Low = 45; Hi gh = 85; end
If Monum= 6 then Do; Low = 50; Hi gh = 90; end
I[f Monum= 7 then Do; Low = 55; High = 95; end
I[f Monum= 8 then Do; Low = 55; High = 95; end
I[f Monum= 9 then Do; Low = 50; Hi gh = 90; end
I f Monum = 10 then Do; Low = 30; Hi gh = 85; end
I f Monum = 11 then Do; Low = 10; High = 75; end
If Monum = 12 then Do; Low = O0; Hi gh = 60; end

Tenmp = Random(Low, Hi gh)
Say "The tenperature right nowis " Tenp

Page [111]

Purpose:

Usage:

Example 1:

RC
Specia variable set by TSO commands

This variable can be used to test the success/failure of a TSO command.

Say "This is a typical Rexx instruction”
Say "Return Code = "RC

Junk

Say "Return Code = "RC

Say "Hello, Wrld"

Say "Return Code = "RC

Say A=B + C

Say "Return Code = "RC

O~NOOOUITAWN R

Line 1 will smply display a message.
Line 2 wil display Return Code = RC. Line 1 was a Rexx instruction, and
did not set RC. Since RC was never set (in this exec), it is stil undefined.
Line 3isnot a Rexx instruction, so it is passed on to TSO, and the
following displays:
COMVAND JUNK NOT FOUND
3 *-* Junk

+++ RC(-3) +++
Line4displays Return Code = -3
Lines 5-6 display:
Hello, World
Return Code = -3
Return code was set to -3 before, and is unchanged because these are both
valid Rexx instructions.
Line 7 displays.
7 +++ Say A =B + C
Error running T1, line 7: Bad arithnmetic conversion
The Rexx exec stops here, so line 8 never executes.

Page [112]

Result
Purpose: Specia TSO variable set by the Return instruction

Usage: Thisvariable is set by the Return instruction after a subroutine is called. If
the subroutine returns an expression, Result will contain that expression. If
not, Result is dropped (becomes uninitialized).

Example: The following exec:
Call Procl
Say "Result is " Result
Call Proc2
Say "Result is " Result
Exi t
Procl:
Return "abc"
Proc2:
Ret urn

Will display:
Result is abc
Result is RESULT

Page [113]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Return

Go back to acdler
Rexx Instruction
RETURN variable

Use this command to return to a calling program, and optionally pass a
variable. The variable that is passed back will be moved into the
"RESULT" variable for use by the caller.

Call Multiply 2 3
Say "The answer is "Result
Exi t
Mul tiply:
Arg Factorl factor?2

Product = Factorl * Factor?2
Ret urn Product

The above example illustrates the use of the Return function and the Result
variable. You could have specified Product instead of Result, but that
would have violated good programming techniques, and depending how
the subroutine is coded, may not give you the desired results. The
illustrated way aways will.

Page [114]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Reverse

Reverses the order of the characters of a string.

Rexx Function

Result = REVERSE(string)

Use this function to turn a string around.

The following Rexx EXEC:
Message = "Happy birt hday
NewMsg = REVERSE(Message)
Say "The original message
Say "The new message is
Will display:

The origi nal nmessage was
The new nmessage is

The following Rexx EXEC:
Message = "Able was | ere
NewMsg = REVERSE(Message)
Say "The original message
Say "The new message i s
Will display:

The origi nal nmessage was
The new nessage is

to you"

was " Message
" NewMsg

Happy birthday to you
uoy ot yadhtrib yppaH

| saw El ba"
was " Message
" NewMsg
Able was | ere | saw El ba
ablE was | ere | saw el bA

| used a palindrome here to illustrate a point: the case of the letters will

remain the same as they were.

Page [115]

Right

Purpose: Return the right "n" positions of a string.
Type: Rexx Function
Syntax: NewString = RIGHT (oldstring,quantity)

Where NewString is the rightmost quantityth positions of oldstring

Example: In the following code,
First8 = RI GHT(" ABCDEFGH JKLMWN', 8)

First8 will contain "GHIJKLMN"

See Also: L eft

Page [116]

Say
Purpose: Display strings, literals, and numeric values
Type: Rexx Instruction

Syntax: Say anything

Usage: This command is probably the most commonly-used Rexx command. It is
used to display information to the user at the terminal. Y ou can mix literas
and variables into the object that you are displaying.

Example:
Say "Hello, Wrld. My nane is Conmputer. What is your name?"
Pul | Your Nane
Say "So, you say your nanme is" YourNanme"."
Say "How old are you, "YourName"?"
Pul I Your Age
Say "Hmmm .." Your Age", huh? That's pretty good. | used to be",
Your Age "once, too!"
Say "CGoodbye, "YourNane", and have anot her wonderful "YourAge" years!”

The above example first asks you for your name, and then your age.

Page [117]

Select

Purpose: Rexx's implementation of the structured programming CASE construct.
Type: Rexx Instruction
Syntax: SELECT

WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
OTHERWISE instruction

END
Example:

SELECT
VWHEN WeekDay = 1 THEN DOMMWrd = " Sunday"
VWHEN WeekDay = 2 THEN DOMWrd = " Monday"
. . . I* The rest of the days of the week */
OTHERW SE DOMWrd = "I nvalid"

END

Page [118]

Purpose:
Syntax:

Usage:

Example 1:

Semi-Colon

To stack instructions on aline
instruction ; instruction ; instruction

Use this command to place more than one instruction on aline, especially
when they are "short" instructions. Stacking instructions on aline can
compact the body of aroutine so you can see more of it at one time.
Sometimes, this can be a help instead of a deterrent.

Tenperature = Randon{ 1, 100)
If tenperature < 20 then do

Weat her = "Brutal ";
Li ke = "heck no!"
End
If tenperature > 19 & tenperature < 32 then do
Weat her = "Col d";
Li ke = "no"
End
If tenperature > 31 & tenperature < 50 then do
Weat her = "N ppy";
Like = "not really"
End
If tenperature > 49 & tenperature < 71 then do
Weat her = "so-so";
Li ke = "so-so"
End
If tenperature > 70 & tenperature < 82 then do

Weat her = "warnt';
Li ke = "nice"
End
If tenperature > 81 then do
Weat her = "hot";
Li ke = "yes!"
End
Say "The tenperature now is "tenperature,
" and the weather is "Wather"."
Say "Do | like it? "Like
In the above example, there are two short instructions in every If-then-do
group. They each take two lines.

Page [119]

Example 2:

Tenperature = Randon{ 1, 100)
If tenperature < 20 then do

Weat her = "Brutal"; Like = "heck no!"

End

If tenperature > 19 & tenperature < 32 then do
Weat her = "Col d"; Li ke = "no"

End

If tenperature > 31 & tenperature < 50 then do
Weat her = "N ppy"; Like = "not really"

End

If tenperature > 49 & tenperature < 71 then do
Weat her = "so-so"; Li ke = "so-so"

End

If tenperature > 70 & tenperature < 82 then do
Weat her = "warnt'; Li ke = "nice"

End

tenperature > 81 then do
Weat her = "hot"; Li ke = "yes!"

End

Say "The tenperature now is "tenperature,
" and the weather is "Wather"."
Say "Do | like this weather? "Like

In the above example, there are two short instructions in every If-then-do

group aso. But since we stacked them on one line, we saved 6 linesin the
program. That made this routine more compact, and we can therefore see
more of the program on one screen. This technique, more importantly, did
not compromise the appearance or readability of this code.

Page [120]

Purpose:

Usage:

Example:

Sigl

Specia TSO variable that contains the line number of the last instruction
that caused ajump to alabel.

Thisvariable is very useful for tracing and debugging purposes. It can tell
you exactly where you came from, without having to "drop breadcrumbs’.

The following exec:

Say "Hello. I amline 3"

Say "Hello. I amline 4"

Call ProcO1

Say "Hello. I amline 6"

Si gnal TagO01

TagOl: Say "Hello. I amline 9; Sigl="Sigl

Exit

ProcO1:

Say "Hello. I amline 13; Sigl="Sigl
Ret urn

Will display:

Hello. | amline 3

Hello. | amline 4

Hello. I amline 13; Sigl=5

Hello. | amline 6

Hello. I amline 9; Sigl=7

Page [121]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Sign

Return the arithmetic sign of a number

Rexx Function

Result = sign(number)

This function returnsa 1 if the number is positive, and anegative 1 if it is
negative. It will return azero if it is neither (a zero is considered neither

positive or negative).

Nunber =

Say

"The

Nunber =

Say

"The

Nunber =

Say

"The

Nunber =

Say

"The

Nunber =

Say

"The

Nunber =

Say

"The

-3
sign
-1
sign
0
sign
+1
sign
2
sign
+3
sign

of
of
of
of
of

of

thi s nunber
thi s nunber
thi s nunber
thi s nunber
thi s nunber

t hi s nunber

is " sign(Nunber)
is " sign(Nunber)
is " sign(Nunber)
is " sign(Nunber)
is " sign(Nunber)

is " sign(Nunber)

The above example yields the fO||0WI ng displays:

The
The
The
The
The
The

sign
sign
sign
sign
sign
sign

of this
of this
of this
of this
of this
of this

nunber

nunber |s
nunber is
nunber is
nunber is
nunber is

Page [122]

PR RO!

1

Purpose:

Type:

Example:

Signal

To unconditionally branch (transfer control) to another part of the
program.

Thisinstruction lends to "spaghetti code”, and should therefore be used
only when it would make the code clearer. "Bailing out" of a complicated
routine is a good example.

Rexx Instruction

Signal Endit /* An error has occurred */

Endit:

Say "Program ending now due to error"
Exit

Note: | have found the signal instruction to be unreliable in some cases. In these cases, for
some reason, the signal statement simply fails to function. When this happens, the use of
switches to control processing is recommended. An example follows.

ErrorSw = 'N /* Initialize the error switch */
Call ProcO1 /* Performroutine 01 */
If BErrorSw ="'N then
Call Proc02 /* Performroutine 02 */
If BErrorSw ="'N then
Call Proc03 /* Performroutine 03 */

If an error occurred in either ProcOl1 or Proc02, instead of performing a"Signa” to the
end of the program, you could ssmply set the error switch to 'Y", and then conditionally
perform the rest of the program routines upon return.

Page [123]

Signal On
Purpose: Turn on error trapping.
Syntax: Signa On condition

See "Trapping Errors' in the Environment section of this manual for a
discussion of thisinstruction.

Page [124]

Purpose:
Type:
Syntax:

Usage:

Example 1:

SourcelLine
Return the text of the program source
Rexx Function
Result = SOURCEL INE(number)

This function will return the actual program text of the line number
supplied.

/* Testl - Rexx Exanple Program */

Say "Hello World #1"

Say "Hello World #2"

Say "Hello World #3"

Say "Hello World #4"

Say "Hello World #5"

Say "Hello Wrld #6"

Say "Hello World #7"

Say "Line three of the programis "SourceLine(3)

OCO~NOUITRAWNPEF

The above example will display the following:

Hello World #1

Hello World #2

Hello World #3

Hello World #4

Hello World #5

Hello World #6

Hello World #7

Line three of the programis Say "Hello World #2"

Page [125]

Purpose:

Type:

Syntax:

Usage:

Example 1:

Space

Adds blanks to or removes blanks from between words in a string.
Rexx Function

NewString = SPACE(OldString,quantity)
where NewString is the result of putting quantity blanks between every
word in OldString.

If quantity is"0", this function will remove all blanks from the string. The
function does not take into consideration how many spaces are already
between words. It sets the string to the quantity you supply. Therefore, this
instruction can be used to nicely format a sentence.

Geeting = "Merry Christnas to one and al "
NewG eeti ng = space(G eeting, 0)

Say NewG eeting

NewG eeti ng = space(G eeting, 1)

Say NewG eeting

NewG eeti ng = space(G eeting, 2)

Say NewG eeting

NewG eeti ng = space(G eeting, 3)

Say NewG eeting

This exec will display the following:

Mer ryChri st mast ooneandal |

Merry Christmas to one and all

Merry Christmas to one and all
Merry Chri st mas to one and al |

Page [126]

Purpose:

Usage:

Example 1:

Stack

Serve as an "input queue” for TSO commands in a Rexx Exec

The Stack (or TSO stack, asit is more commonly called) is a storage area
used to hold TSO commands that are about to be executed. These TSO
commands were moved into the stack by either an individua keying them
in at the terminal, or by a Rexx program.

When a Rexx exec needs information, it first looks for it on the stack. If the
stack is empty, TSO will prompt the user (see example 1).

If you wish to read TSO commands directly, and bypass the stack, use
Parse External.

More than one TSO stack can be created. The number of TSO stacksis
limited only by the core available. Only the current TSO stack, though, is
the one that is the subject of operations.

The TSO stack can be shared by subroutines and by called programs.

If you read information into the stack and leave it there, then after your
Rexx exec ends, TSO will try to execute each item in the stack (see
example #2).

Severa commands operate on or manipulate the stack:

Push Adds items to the stack
Pull Removes items from the stack
Queue Adds items to the stack

NewStack Establishes a new stack

DelStack Deletes the current (newest) stack

ExeclO Reads/writes afile or array into/from the stack

Each of the items above is documented in this manual in detail as their own
subjects.

1 NewSt ack
2 Push "Hell o #1"
3 Pull Answerl

4 Say "l just |earned" Answerl
5 Pull Answer2

6 Say "l just |earned" Answer?2
In this example,

1 Establishes a new stack
2 Puts the phrase "Hello #1" onto the stack
3 Gets (and removes) that phrase from the stack

Page [127]

4Digplays! just |earned HELLO #1
5 Prompts the user for more input, since the stack is now empty
6 Displays whatever the user just typed in.

Example 2:
NewSt ack
Push "Hel |l o #1"
Push "Hel |l o #2"
Push "Hel |l o #3"
Push "Hel | o #4"
Push "Hel | o #5"

This example will display the following:
COVWAND HELLO NOT FOUND
COVWAND HELLO NOT FOUND
COVWAND HELLO NOT FOUND
COVWAND HELLO NOT FOUND
COVWWAND HELLO NOT FOUND

Page [128]

Purpose:
Type:

Syntax:

Usage:

Example 1:

Strip
Removes leading or trailing spaces from a string.
Rexx Function

New3tring = STRIP(OldString,option)
where New3ring is the result of removing blanks from OldString based on
the setting of option.

The function will remove from the string:
Leading blanks (option = "L"),

Trailing blanks (Option ="T"), or

Leading and Trailing blanks (Option = "B")

Geeting =" Happy New Year to you
NewG eeting = Strip(Geeting,"L")
Say NewG eeting

New& eeting = Strip(Geeting,"T")
Say NewG eeting

NewG eeting = Strip(Geeting,"B")
Say NewG eeting

This exec will display the following results:
Happy New Year to you

Happy New Year to you
Happy New Year to you

Page [129]

SubCom

Purpose: Poll TSO to seeif aparticular environment is available.

Type: TSO command

Syntax: Subcom environment

Usage: This command can be used to test to seeif an environment is available

before issuing commands to it. For example, before you invoke the | SPF
editor on adataset, it may be agood ideato first check to see if the system
has | SPF available (although this would be a good assumption).

Thisis the strongest reason that | could come up with for using this
command, which probably demonstrates why | have never used it in any of
My execs. In certain situations, there may indeed be a good reason to use
it.

See als0: Address

Example:

" SubCom TSO'

If RC=0 then Say "TSO i s avail abl e"

El se Say "TSO is not available; RC" RC
" SubCom | SPF"

If RC=0 then Say "I SPF is avail abl e"

El se Say "I SPF is not available; RC=" RC
"SubCom Junk"

If RC =0 then Say "Junk is avail abl e"

El se Say "Junk is not available; RC=" RC

" SubCom | SPEXEC"

If RC =0 then Say "I SPEXEC i s avail abl e"

El se Say "I SPEXEC i s not available; RC=" RC
"SubCom | SREDI T"

If RC=0 then Say "ISREDIT is avail abl e"

El se Say "ISREDIT is not available; RC=" RC
" SubCom CMVS'

If RC=0 then Say "CMV5 is avail abl e"

El se Say "CMB is not available; RCG" RC

The above exec will display the following:
TSO isavallable

|SPF is not available; RC=1

Junk is not available; RC=1

ISPEXEC isavailable

ISREDIT isavailable

CMSisnot available, RC=1

Page [130]

Purpose:

Type:

Syntax:

Example:

SubStr

Thisis aRexx built-in function that will return a portion of a string or
variable.

Rexx Function

var = SUBSTR(string,begin,length)

var Any variable name

string The object string (can be alitera aso)

begin The beginning position of the string you wish to refer to
length Then length of the string you wish to refer to

Section = substr(al phabet,4,5)

Where alphabet is a string containing al of the letters of the al phabet
After thisinstruction executes, the variable SECTION will contain
"DEFGH"

Page [131]

SubWord

Purpose: Returns a subset of a sentence
Type: Rexx Function
Syntax: NewString = SUBWORD(OldString,start,quantity)

where NewS3ring is the result of copying quantity words from OldString,
starting at word number start.

Usage: Extract a fixed number of words from a sentence.
Example 1:

Phrase = "Fourscore and seven years ago, our

fathers..."

Extract = SUBWORD(Phr ase, 2, 3)

Say Extract

Extract = SUBWORD(Phrase, 7, 3)

Say Extract

This example will display the following:
and seven years
fathers. ..

Page [132]

Purpose:

Type:

Syntax:

Usage:

Example:

Symbol

Tdlsif acharacter string isavariable, literal, or neither

Rexx Function

Result = SYMBOL (charstring)

According to "the book", this function will test a character string, and
return one of the following:

VAR If the character string isavalid variable name

LIT If thecharacter string isavalid literal

BAD If neither of the above

| have found that this function will return only "LIT" or "BAD", based on
whether the supplied character string can comprise avalid variable name.

Result = SYMBOL(Mynane)

Say Result

Myname = 4

Result = SYMBOL(Mynane)
Say Result

Result = SYMBOL("**")
Say Result

Will display:

LIT

LIT

BAD

Page [133]

SYSDSN

Purpose: Return the status of a datasethame
Type: TSO external function

Syntax: Result = SY SDSN(datasetname)
Usage:

This function can tell you whether a dataset appears in the catal ogue,

whether a member name appearsin a PDS, etc. It is not quite as

comprehensive as LISTDSI.

Consult the following chart for possible results.

Result

Reason

DATASET NOT FOUND

The datasetname was not in the catalogue

ERROR PROCESSING REQUESTED
DATASET

INVALID DATASETNAME

The datasetname was invalid: Length > 44
chars, invalid chars, etc.

MEMBER NOT FOUND

Looking for a member of a PDS, but it
was hot found

MEMBER SPECIFIED, BUT DATASET
ISNOT PARTITIONED

Looking for a member of a PDS, but the
dataset isnot aPDS

MISSING DATASETNAME

SY SDSN(): no datasetname supplied

OK

Disk dataset, in catalogue

PROTECTED DATASET

UNAVAILABLE DATASET

VOLUME NOT ON SYSTEM

Tape dataset, in catalogue

See als0: LISTDSI

Page [134]

SYSVAR

Purpose: Return information about the system

Type: TSO externa function

Syntax: Result = SY SVAR(infoRequest)

Usage: This function can tell you the current TSO user signed on to the system,

the name of the logon proc being used, and many other things.
Consult the following chart for alist.
InfoRequest Description

SYSCPU The number of CPU seconds used in this TSO session so far

SY SENV Thre environment you are currently executing in:
FORE for foreground; BACK for background (via JCL)

SYSHSM Thiswill be the HSM release number. If HSM is not available, this will
be blank.

SYSICMD The name of the command or Rexx exec

SY SISPF ACTIVE if the ISPF dialogue manager is active. Test this variable in
your exec if it depends on | SPF services being available.

SYSLRACF RACEF level, or spacesif not available

SYSLTerm Number of lines available on the terminal screen.

SYSNEST YESif executed from another exec or CLIST; NO if executed from
TSO.

SYSPCmd The most recently-executed TSO command from this exec. It will be
EXEC if there was none.

SY SPREF The prefix that TSO putsin front of unqualified datasetnames.

SY SPROC The name of the procedure that was used to log on to TSO

SYSRACF AVAILABLE, NOT AVAILABLE, or NOT INSTALLED

SYSSCmd The most recently-executed TSO sub-command. Thisis "the book"
explanation, but | find it to be always blank.

SY SSRV How many SRM units were used so far

SYSTSOE TSO/E level

SYSUID The TSO UserID of the currently-logged on user

SYSWTerm Number of columns available on the termina screen. Thisis

LINESIZE+1

Page [135]

Time

Purpose: Thisisa REXX built-in function that will provide you with the current
time, in avariety of different formats.

Type: Rexx Function
Syntax: Result = Time(option)

Based on the specification of the Options below, "result”" will contain the
time in the corresponding format, if the current time was 1.05pm (plus a

few seconds).
Option Meaning Format Example
(blank) normal (same as'N’) hh:mm:ss 13:05:13
C Civil hh:mm xm 1:05pm
E Elapsed (seconds and microseconds) sssssssss.mmm | 111111.222222
mmm
H hour, 24-hour format hh 13
L long hh:mm:ss.dddd | 13:05:13.090191
M Number of minutes since midnight nnnn 785
N normal hh:mm:ss 13:05:13
R Reset elapsed time 0
S Number of seconds since midnight nnnnn 47113

If you use an unsupported option, for example "A", you will see an error message similar
to the following:

5 +++ Say "Thetime now is" Time(A)
Error running AskTime, line 5: Incorrect call to routine

This command can a so be used for measuring elapsed time. The first time this command is
issued with either the 'E' or 'R’ option, the elapsed time counter is started. Every
subsequent issuance of the command with either of these options will return the elapsed
time since the first issuance of Time('E’) or the last issuance of Time('R’). Issuing the
command with option 'R" will reset the elapsed time counter, but only after it returns the
elapsed time.

The following example demonstrates the use of elapsed time.
Dunmmy = Ti ne(E) /[* Start time */
Say "I amwaiting for you to hit enter!™

Pul | Answer

Duration = Time('E)

Say "Pointl1l:" Duration "seconds!"

Duration = Time('E)

Say "Point2:" Duration "seconds!"

Duration = Time('R)

Say "Point3:" Duration "seconds!"

Duration = Time('E)

Say "Point4:" Duration "seconds!"

Page [136]

Say "Point5:" Time('E)

"seconds!"

This exec will display something like this:

| amwaiting for

Poi nt 1:
Poi nt 2:
Poi nt 3:
Poi nt 4:
Poi nt 5:

1. 200962
1. 203493
1. 205070
0. 001185
0. 002150

you to hit enter!

seconds!
seconds!
seconds!
seconds!
seconds!

Page [137]

Trace
Purpose: List instructions as they are executed; variables as they are set
Type: Rexx Function

See “Debugging” for adiscussion on this subject

Page [138]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Tranglate
Convert characters to other characters
Rexx Function
Result = TRANSLATE(ObjectString,String2,3ringl)

Convert all occurrences of ObjectSring that appear in Stringl to the
corresponding character in String2.

| find this a difficult command to conceptualize, to explain, or to
remember, SO avery detailed example is necessary here.

Say TRANSLATE(" ABCDEFGHI J", "1234567890", " DAVE")
Would result in:

2BCL4FGHI J
Because:

Stringl = "DpAavE

String2 = "1234567890"
ObjectString = " ABCDEFGHI J"
Result = "2BCLl4FGH J"

In ObjectSring, the first character, A, appearsin Sringl. So that A in
ObjectString is replaced by 2, which is the character in Sring2 that
corresponds to the character in Stringl.

The next character in ObjectString does not appear in Stringl, so it is not
converted. The same applies to the third.

The fourth character in ObjectSring (D), however, does appear in Stringl.
So that D in ObjectString is replaced by 1, which is the character in String2
that corresponds to the character in Stringl.

To visualize how this command works, and how to make it work for you,
just lay Sringl on top of Sring2, like I have here.

Page [139]

Example 2:

In this scenario, it turns out that the English teacher mistakenly gave the
class the wrong test: it was one grade level too high. So now, she wants to
push everyone's grade up one notch, instead of making everyone re-take
the test. Firgt, let'slay out String 1 and String 2:

Stringl = '‘BCDF

String2 = '‘ABCD'

Then code the Rexx exec, as follows:

A dG ades = "BBCCBDFDDFD'

NewG ades = TRANSLATE(Q dG ades, "ABCD', " BCDF")

Say "The ol d grades were" O dG ades
Say "The new grades are " New& ades

which will result in:
The ol d grades were BBCCBDFDDFD
The new grades are AABBACDCCDC

Page [140]

Purpose:

Type:

Syntax:

Usage:

Examples:

Trunc
Return a number with a specified number of decimal places
Rexx Function

NewNumber = TRUNC(Number,Decimal Places)
where NewNumber is Number with Decimal Places decimal places.

This command could have been called Decimal Places, because that
applies more than Trunc. The command will add or remove positions based
on the specification of decimal places.

Say Trunc(1l.12345, 0)
Say Trunc(1l.12345, 4)
Say Trunc(1,4)

Will display:
1

1.1234
1. 0000

Page [141]

Upper

Purpose: Convert a character string to upper case
Type: Rexx Instruction
Syntax: UPPER variablel {variable2} {variable3} ...

Examples: fname='George’; Iname='Bush’
Upper fname Iname
Say Iname’,' fname /* displays "BUSH , GEORGE" */

See adso: Parse Upper Arg

Page [142]

UserlD

Purpose: Return the TSO UserID of the resource who is currently logged on to the
system

Type: Rexx Function

Usage: Thisis commonly used to determine access priviledges.

Examples:

Say "Your userIDis" UserlD)

Could display:
Your userl D is DGRUNDO1

Page [143]

Value

Purpose: Returns the contents of a variable after resolving it. The main purpose for
this function is to resolve a dynamically-created variable.

Type: Rexx Function

Syntax: NewVar = VALUE(variable)

Usage: There is a subtle difference between using VALUE(variable) and just the
variable itself. Value will convert the contents of a variable to upper case
while resolving it.

Simple example:

Name = "Dave"
Say "My nanme is "val ue(Nane)
Say "My nane is "Nane

The above exec will display:
My nane i s DAVE
My nane is Dave

Example of resolving a dynamically-created variable.

In one particular Rexx exec, | create ten arrays, named Array01, Array02, ...
Array10. We wish to perform the same processing on each array, so we use a subroutine,
or what is more commonly known as a procedure.

Exanpl e pendi ng

Page [144]

Purpose:

Syntax:

Usage:

Example:

Variables

To retain values for use later in the program. A variable can hold any type
of value: character, numeric, hex, binary, etc.

A variable must start with a character (never a number), and certain special
characters. The rest of the variable can contain aphabetic characters,
numbers, and certain special characters.

Some specia characters that can appear in avariable name are as follows:
@ #3$!

Some specia characters that can not appear in avariable name are as
follows:
% &

For any other specia characters, you're on your own. Try it out; it can't
hurt.

A variable name can be up to 250 characters long.

A variable in Rexx does not get declared. It is assigned avaue by using it
on the left side of an assignment statement, or with the use of certain Rexx
instructions. A variableis not avariable until it is given avalue. Note that
until avariable isgiven avaue, itisaliteral. If avariable'svalueis
removed (with the "Drop"), it is then converted back to aliteral.

If you happen to see a variable name appear in your output unexpectedly,
there is a good chance that you misspelled either it, or the one that you
initialized.

My_name = "John Smith"

Page [145]

Purpose:

Syntax:

Usage:

Example:

Variables, Compound
To act as avariable, with an added benefit. The same variable name can be
used to contain any number of similar values. Thisis avery powerful
feature of Rexx, and is very simple to implement. This feature is commonly
used to construct an array.
Same as regular variables, but with a period and a suffix added to the end.

Simply assign avaue to the nth element of the array. The "Oth" element is
used to contain the number of elementsin the array.

The following excerpt from a Rexx exec:

Nane.1l = "Mary"

Name. 2 = "Joe"

Nane.3 = "Alice"

Nane. 4 = " Snokey"

Nane.0 = 5 /* Establish no. of elenents */

Say "There are "name.0" elenments in this array”
Dol =1 to Nane.O

Say Nane. |
End

Will yield the following results:
Mary

Joe

Alice

Snokey

NAME. 5

Page [146]

Purpose:

Type:

Syntax:

Usage:

Example:

Verify
Tells whether certain characters are contained in a given chracter string
Rexx Function

Result = VERIFY (FindString,ObjectString)
Result isthe first position of FindString that does not appear in
ObjectSring.

If Result is zero, then all of FindString appears somewhere in ObjectString.
Both strings are case-sensitive: alower-case letter will not match an upper-
case, and vice-versa.

Say Verify('l',' TEAM)

Say Verify(' Scienc',"ConSci enci ous")
Say Verify('fat',"indefatigable")
Say Verify('hillary',"hilarious")

Will display:
(Thereisno"I" in"TEAM")

~oopRr

Page [147]

Purpose:

Type:

Syntax:

Usage:

Example:

Word

Returns the nth word of a string.
Rexx Function

Result = WORD(phrase,n)
Result is the nth word of phrase.

If nisgreater than the number of words in the phrase, result will contain
blanks. If nis zero, the function will err out.

Say Word("Merry Christmas and Happy New Year", 2)
Say Word("Merry Christmas and Happy New Year", 7)
Say Word("Merry Christmas and Happy New Year", 0)

Will display:
Chri st nas

3 +++ Say Word("Merry Christmas and Happy New Year", 0)
Error running Testl, line 3: Incorrect call to routine

Page [148]

Wordl ndex

Purpose: Return the character position of aword in a string
Type: Rexx Function
Syntax: Position = WORDINDEX(string,n)

where Position is the character number of the nth word in string.

Usage: This function will return the character position where a particular word
startsin a string.

Example:
Answer = Wordl ndex("Merry Christmas and Happy New Year", 5)
Say Answer

Would display
27

The 5th word of the string is New, which starts at character position
number 27.

Page [149]

WordL ength

Purpose: Return the length of aword in a string

Type: Rexx Function

Syntax: Answer = WORDLENGTH(string,n)
where Answer is the length of the nth word in string.

Usage: This function returns the length (number of characters) of aword in a
string.

Example:
Answer = WordLength("Merry Christmas and Happy New Year", 5)
Say Answer
Would display
3

The 5th word of the string is "New", whose length is 3.

Page [150]

Wor dPos

Purpose: Return the position of aword or phrasein a string
Type: Rexx Function
Syntax: Answer = WORDPOS(phrase,string)
where Answer is the length of the nth word in string.
Usage: This function returns the word position of a phrase in a string.
Example:

Answer = WordPos(' and Happy',"Merry Christnmas and
Happy New Year")
Say Answer

Would display
3

Page [151]

Words

Purpose: Returns a count of the wordsin a string
Type: Rexx Function
Syntax: Answer = WORDS(string)
Example:
Answer = Words("Merry Christmas and Happy New Year")
Say Answer
Would display
6

Page [152]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

XRange

Return a string of characters between two characters in the ASCII
character set.

Rexx Function

Result = X Range(startchar,endchar)

startchar-The first ASCII character that will be returned. The default is
low-value (X'00).

endchar- The last ASCII character that will be returned. the default is high-
value (X'FF).

This function will return all of the charactersin the ASCII Character set
between startchar and endchar, inclusive. If startchar is greater than
endchar, then the string that is returned will wrap around through the

beginning.

The following example will not return the letters in the alphabet as a string.
Thisis unfortunate, because the function would be alittle more useful if it

considered only valid characters.

Al phabet = XRange(' A ,'Z")

Say Al phabet

The reason for thisis that the leters of the alphabet do not appear
continuously in the ASCII character set. What would be returned would be
the ASCII characters represented by X'C1' through X'E9', inclusive:
ABCDEFGHI....... JKLMNOPQR........ STUVWXYZ

The following example will return the alphabet.
Al phabet = XRange(' A ,'l")XRange('J',"'R)XRange('S','Z")
Say Al phabet

Page [153]

Purpose:
Type:
Syntax:

Example:

X2C

Converts a hexadecimal string to character
Rexx Function

Char String = X2C(hexstring)

Answer = X2C(' CACLE5C560F1F6F1F6')
Say Answer

Would display
Dave- 1616

Page [154]

Purpose:
Type:
Syntax:

Example:

X2D

Converts a hexadecimal string to decimal
Rexx Function

Number = X2C(hexstring)

Answer = X20(' FF')
Say Answer

Would display
255

Answer = X2D(' FFFF')
Say Answer

Would display
65535

Page [155]

I nstructions Not Covered

Certain instructions, commands, and functions are seldom, if at al, used in
applications. These are used by system administrators and system programmers. These
instructions, commands, and functions are listed here. Why are they even mentioned, if we
are not going to document them?

They are listed, for the most part, let you know (and to remind me) that they are
indeed available, if we want to use them or learn more about them. Documentation of
these instructions, commands, and functions is beyond the scope of this manual. Check the
appendix for additional sources of documentation.

DropBuf Delete a data stack buffer
ExecUtil Control Rexx processing options for the current Rexx environment

M akeBuf Add a buffer to the data stack

Options Thisinstruction is used for DBCS (Double-Byte Character Set) character
and data operations support.

Qbuf determine the number of data stack buffers that exist
Qelem Determine the number of data stack elements that exist
Storage Retrieve a number of bytes from a main storage address, or store a number

of bytesinto a main storage address.

Page [156]

Section |l -A Starter Rexx Tutorial

Page [157]

Follow thistutoria by keying in the example Rexx execs and reading the
associated commentary. If your results are not identical to those of the tutorial, try to find
out exactly why. Each example builds on the previous ones, so it isimportant that you
understand each before you move on.

/* Rexx Exec Tutorial #1 */
Say "Hello World"

Thisis one of the shortest Rexx execs ever written. All it doesis display the famous
programmer’s primer message.

[* Rexx Exec Tutorial #2 */

Say "What is your name?'

Pull Answer

Say "So, your answer is" Answer”. That is swell!™

This exec will ask you your name, and if you reply, it will echo it back, something like this:
So, your answer is JOHNNY. That is swell!

[* Rexx Exec Tutorial #3 */
Say "What is your name?'
Pull Answer

Say "So, "Answer", how old are you?'

Pull Age

Agelndays = Age* 365

Say "If you didn't lie to me, you are about" AgelnDays "days old."

This exec will ask you your name, and then perform a calculation. Notice that | used an
apostrophe within a string that was enclosed in quotation marks. The exec's last display

would look like this:
If you didn't lie to ne, you are about 8030 days ol d.

From here, the possibilities are endless. Rather than waste your (and my) time by making

you go through endless and pointless exercises, | will stop here, and let you get started
with playing with some ideas of your own. Just remember: have fun!

Page [158]

Section 111 - Rexx Examples

Page [159]

| believe strongly in examples. No matter what someoneistrying to say, it is
clearer if it can be illustrated with a good example. A person can then glean an
interpretation from that example.

The easiest way to write a Rexx exec isto take one that exists, and tailor it for
your own use. Remember that like with any programming language, if you copy someone's
source code verbatim, it's not ethically cool to put your name on it. If you use a major
portion of source code that is provided to you for free, it isonly fair to at least give credit
to the author somewhere in your program. All of these examples were written by David
Grund Sr., and are free to use.

The examples provided here vary in purposes, but can be tailored to most specific
needs that you have. They don't necessarily demonstrate the best way to write a Rexx exec
in al cases. They do, however, demonstrate different techniques.

In some cases, some of the execs depend on data from ISPF libraries. That datais
not included.

Disclaimer: All examples are provided for the sake of example only. Thereisno
guarantee that these work as desired, or are entirely bug-free. Y ou are free to, and
encouraged to, develop and improve any or all of these examples.

Please respect an author's inventiveness and hard work. Since Rexx execs are

distributed with the source, if you publish any new Rexx execs that you created using an
existing one as a basis, you are requested to at least credit the author.

Page [160]

The examples provided here are as follows:

ALLOCEIO
CAPTSO
CHGBLKC
CHGDATA
CHGSTEP
COMMANDS
COMPCO
COMPDS
COMPPDS
DD
DELDUPS
DURATION
FIXJCL

FX

HD

INIT
INITSPF
JOBCARD
JUMBLE
LA

LISTDSI
LOTTERY
LPDSIX
PROCSYMS
PTS

PTS2
REXXMODL
SCALE
SDN
SHOWDUPS
STACK
TIMEFMTS
TIMETOGO

Allocate O/P dataset; write Rexx array to it
Capture TSO command output

Insert a COBOL change block

Modify adatafile

Change stepsin JCL

List available commands

Compare two files of order numbers
Compare two sequential datasets
Compare two PDS's

Add aDD Statement

Delete duplicate records

Time an EXEC

Fix Job Control

File name cross-reference

Hex Dump

Establish my TSO environment

Establish my 1SPF environment

Create ajobcard

Display all combinations of |etters

List TSO allocations

List dataset information

Pick lottery numbers

List aPDS Index to a Sequentia File
Perform symbolic substitution
PDS-to-Sequential; member name is prefix
PDS-to-Sequentia; member name is inserted
Rexx Exec Mode

Display a Scale

Sorted Directory w/Notes; directory annotator
Show duplicate records

Start another |SPF session

Show all time formats

Display time until an event

Page [161]

ALLOCEIO - Allocate O/P dataset; writearray to it
Thisis a code snippet that will allocate a TSO dataset, and then write a Rexx array
to that dataset. The TSO dataset is deleted first, in case it already exists.
"Del ete " MapDSN
"Al'l ocate DD(Fi Cvt DS) DA("MapDSN') new space(1 1) tracks",
"LRECL(80) Block(6160) recfn(f b) RETPD(0)"

"Execl O' MapArray.0 "Di skWFi Cvt DS (STEM MapArray. FINIS'
"Free DDNAVE(Fi Cvt DS) DA(" MapDSN')"

Page [162]

CAPTSO - Capture TSO command output

Using this exec, you can capture the output from just about any TSO command.
The purpose, of course, isto dump it into a dataset and edit it.

/* CapTSO - Capture TSO Qutput - Rexx Exec */
/* Witten by Dave G und */

Dunmmy = Qut Trap("output_line.","*")
"Ll STd ' GRUND. ASSEMBLY. DATA' nf
NumlLi nes = Qut Put _Line. 0

Say Nunlines "lines were created”
Dunmy = Qut Trap(" OFF")

"Del ete CAPTSO. List"
"Al'l ocate DD(CapTSO DA(CAPTSO. List) new space(15 15) tracks",
"LRECL(80) Block(6160) recfm(f b) RETPD(O0)"

"Execl O' QutPut_line.0 "Di skW CapTSO (STEM QutPut_Line. FINS"
"Free DDNAVE(CapTSO) DA(CAPTSO. List)"

ADDRESS "1 SPEXEC' "EDI T Dat aset (CAPTSO Li st)

Page [163]

CHGBLKC - Insert a COBOL change block

This Rexx exec is an | SPF edit macro, used to insert a program modification
comment block into a program. By using this exec, you can make the comment block will
look the same for every program, hence an increase in productivity. This technique, of
course, can be used for any language. | have created one for Easytrieve and another for
Assembler.

/* ChgBl kC - Insert COBOL Change Block - ISPF Edit Macro (REXX EXEC) */
ADDRESS "I SREDI T" " MACRO PROCESS'
J11= "00000L%---- - mmm e e oo "

J12= Moo o
J21= "000002* PROGRAM MODI FI CATI ON LOG "
J22=" *
J31= "000003* LOG # DATE WHO REASON "
J32=" *

J41= "000004* 9 06/ 09/ 95 DAVE GRUND change descri p"
J42= "tion line 1 *

J51= "000005* change descri p"
J52= "tion line 2 *n

address "I SREDI T* "LINE_AFTER O =" "'"J11""Ji2""'"
address "I SREDI T* "LINE_AFTER 1 =" "'"J21""J22""'"
address "I SREDI T* "LINE_AFTER 2 =" "'"J31""J32""'"
address "I SREDI T* "LINE_AFTER 3 =" "'"J41""J42""'"
address "I SREDI T* "LINE_AFTER 4 =" "'"Jb51""Jb52""'"
address "I SREDI T* "LINE_AFTER 5 =" "'"J11""Jiz2"'"
ADDRESS "I SREDI T" "Cursor = 1 0"

address "I SREDI T" "LINE_AFTER 0 = MSCGLi ne",

" "Pl ease nove these lines into the Remarks section

Page [164]

CHGDATA - Modify adatafile

This exec is used to modify adatafile. It reads a data file into core (an array),
modifies it (with hard-coded instructions), and then writes it back out. Thisis an exec that
istailored for use each time it is used.

/* ChgData - Change a File - REXX Exec */

/* Witten by Dave G und */

/* This exec will read a data file, and nodify it to contain */
/* conditions for testing: invalid data, etc */

A Mai n Body of Program---------------------------- */
ARG | PDSN OPDSN

IPCr =0 /* Input record counter */
oPGr =0 /* Qutput record counter */

Call Pgm.lInit

Do Forever
Call ReadRec /* Read rec into stack; count */
If 1PEOF = "YES" then Leave
Pull | PRec /* Gt it fromthe stack */
Call ProcessRecord /* Process it */
end
Call ProcEQJ /* EQJ) Processing */
Exit
/* ___ */
/* ____________ */
/* Program lnitialization */
/* ____________ */
PgmlInit:
"Del St ack"
If IPDSN = "" then do

Say "Conmand Type:

Synt ax: ChgData | pDSN CpDSN'
Exi t
end

I[f OPDSN = "" then do

OpDSN = | PDSN| | . Modi fi ed

Say "OPDSN not specified;" OPDSN "assuned."
end

"Alloc DDN(InFile) DSN("IPDSN') SHR'

If RC <> 0 then do
Say "l could not allocate "IPDSN'. Sorry."
Exi t

end

Dunmmy = Li st DSI (1 PDSN)

OPLRECL = SYSLRECL

OPBLKSi ze = SYSBI kSi ze

"Del ete " OPDSN
"Free FI(QutFile)"

Page [165]

"Alloc DD(QutFile) DA("OPDSN') New space(15 15) tracks ",
“Lrecl ("OPLRECL") Bl ock("OPBI kSi ze") Recfm(F B)"
If RC <> 0 then do

Say "l could not allocate "OPDSN'. Sorry."
Exi t
end
Return
%o * [
ReadRec:
%o * [
"EXECIO 1 Di skR Infile" /* Add the I/P rec to the stack */
If RC <> 0 then do
| PECF = "YES"
"EXECLO O DiskR Infile (Finis" [* Cose the input file */
end
Else IpCGr = 1pCr + 1 /* Count the records */
Return ""
%o * [
/* Process the Record */
%o * [
ProcessRecor d:
ORec = | pRec
If 1pCr = 11 then /* Make the class invalid */
OPRec = Substr(1PRec,1,9)|]|"0XRIC"|| Substr (I pREc, 15, 307)
If 1pCr = 16 then /* Make the class invalid */
OPRec = Substr(lPRec,1,9)]||"123456789"| | Substr (1 pREc, 19, 303)
If 1pCr = 22 then /* Nomtransfer pack */
OPRec = Substr(1PRec,1,24)]||"XYZ"|| Substr (Il pREc, 28, 294)
If 1pCr = 33 then /* Nom m ni mum */
OPRec = Substr(1PRec,1,27)||"ABC'|| Substr (Il pREc, 31, 291)
If 1pCr = 44 then /* Store Nunber */
OPRec = Substr(1PRec,1,33)||"DE"|| Substr (I pREc, 36, 286)
If 1pCr = 55 then /* Store quantity */
OPRec = Substr(1PRec,1,36)||"GH J"|| Substr (I pREc, 41, 281)
If 1pCr = 57 then /* \\ar ehouse Nunber */
OPRec = Substr(1PRec,1,313)||"89"|| Substr (I pREc, 316, 6)
If 1pCr = 32 then /* \\arehouse quantity */
OPRec = Substr (I PRec, 1, 315) || " DAVEG "
Push OpRec
"EXECIO' 1 "DiskWCQutFile"
pCr = Cr + 1 /* Count the records */
Return
%o * [
/* End-of -job Processing */
[* oo * [
Pr ocEQJ:
"Del Stack"
"EXECIO' 0 "DiskWQutFile (Finis" /* Close the file */

Page [166]

"Free DDNAME(InFile QutFile)"

Say "*** End of Job Totals ***"

Say IpQr "records read"

Say OpCtr "records witten”
Return

Page [167]

CHGSTEP - Change stepsin JCL

When you have religiously numbered the stepsin ajob stream, and find that you
have to insert afew, especialy toward the beginning, your neatly-sequenced step names
are compromised.

This Rexx exec will "quickly" renumber the steps so they are back in sequence and
incremented by 10.

Here, you are creating the list of TSO commands that you will use to ultimately
make the changes. Creating a TSO command set is less stressful than making the changes
one-by-one. This way, you don't have to remember where you left off, and you can use
| SPF's editor to mass-produce the change statements.

/* CHGSTEP - RENUMBER STEPS IN A JOB - REXX EXEC */

ADDRESS " | SREDI T* " MACRO PROCESS"

ADDRESS "| SREDI T* "C STEP190 STEP330 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP185 STEP320 WORD ALL 10"
ADDRESS "| SREDI T* "C STEP180 STEP310 WORD ALL 10"
ADDRESS "| SREDI T* "C STEP170 STEP300 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP160 STEP290 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP150 STEP280 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP140 STEP270 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP130 STEP260 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP120 STEP250 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP110 STEP240 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP100 STEP230 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP096 STEP220 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP095 STEP210 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP090 STEP200 WORD ALL 10"
ADDRESS " | SREDI T* " C STEPO80 STEP190 WORD ALL 10"
ADDRESS " | SREDI T* "C STEPO70 STEP180 WORD ALL 10"
ADDRESS " | SREDI T* "C STEPO60 STEP170 WORD ALL 10"
ADDRESS " | SREDI T* "C STEPO50 STEP160 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP040 STEP150 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP038 STEP140 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP037 STEP130 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP036 STEP120 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP035 STEP110 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP034 STEP100 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP033 STEP090 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP032 STEPO80 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP031 STEPO70 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP025 STEPO60 WORD ALL 10"
ADDRESS " | SREDI T* "C STEP024 STEPO50 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP023 STEP040 WORD ALL 10"
ADDRESS " | SREDI T* " C STEP022 STEPO30 WORD ALL 10"

Page [168]

COMMANDS - List available commands

Thisisavery smply Rexx exec, but isvery useful. | write so many little Rexx
execs that sometimes | forget what the names of them are. So every time | write a new
Rexx exec, | update a Rexx exec called "Commands'. Then, when | need to remember a
command name, | simple execute the "Commands' command, and it produces a list for
me.

Thisis provided as a suggestion more than as an example.

/* Commands - Rexx Exec */

/* The conmands avail able via Dave G-und's REXX Exec are: */
Say "I SPF Edit Macros:"

Say "CB - Cursor Browse, |SPF macro"

Say "CE - Cursor Edit, |SPF nacro”

Say "TSO Comands”
Say "ConpDS - Conpare two sequential datasets”

Page [169]

COMPCO - Compare Two Filesof Order Numbers

/* ConpCO - Compare Two Files O Order Numbers - Rexx */

/* Witten by Dave G und */
| PDSN1 = "' DG und. STEP120. SYSUT2' "

| PDSN2 = "' DG und. STEP140. SYSUT2' "

Call ProcO1 /* Programlnitialization */
Call Proc02 /* List First File to an Array */
Call Proc03 /* List Second File to an Array */
Call Proc04 /* Conpare files now */
Call Proc99 /* Finalization */
Exi t

/* __ */
/* Cal | ed Procedures */
/* __ */
/* ____________ */

/* ProgramlInitialization */

/* ____________ */

ProcO1:

Say "ConpCO - Conpare Two Files of Order Nunbers”
Say "Proceeding..."

Ret urn

[e e e */

/* Read first file into core */
[e e e */

Proc02:

"Free fi(sysutl)"

“"All ocate Fi (SYSUT1) DA("IPDSNL") shr"

"Execl O * DiskR SYSUT1 (STEM Fil elLines. FIN S"
"Free FI(SYSUT1)"

Say FilellLines.0 "records read from FI LE2"

Ret urn

[e e e */

/* Read second file into core */
[e e e */

Proc03:

"Free fi(sysut2)"

“"All ocate Fi (SYSUT2) DA("IPDSN2") shr"

"Execl O * DiskR SYSUT2 (STEM Fil e2Lines. FIN S"
"Free FI(SYSUT2)"

Say File2Lines.0 "records read from FI LE1"

Ret urn

/* ____________ */

/* Conpare the arrays now */

/* ____________ */

Proc04:
Fil elRec = 1; Fil e2Rec = 1;
Call ReadFilel /* Read first record fromFile 1 */
Call ReadFile2 /* Read first record fromFile 2 */

InFilelOnly = 0; Infile2Gnly = 0; InBoth = O;

Do Forever

Page [170]

/* Say "Conparing " FilellLine "to" File2Line */
If FilelLine = Fil e2Li ne then do
If FilelLine = "99999" then Leave

/* Say FilelLine" in both
InBoth = InBoth + 1

files" */

Call ReadFilel /* Read next record fromFile 1
Call ReadFile2 /* Read next record fromFile 2

End

Else If FilelLine < File2L
InFilelOnly = InFilelOn
Say FilellLine" in FILE2
Call ReadFilel /* Read

End

El se do
Infile2Only = Infile20n
Say File2Line" in FILEl
Call ReadFile2 /* Read

End
End
Ret urn
/* ____________ */
/* Read a record fromFile 1 */
/* ____________ */
ReadFi | el:

If FilelRec > FilelLines.O then
Fil elLi ne = "99999"

El se DO
FilelLine = left(FilelLines
FilelRec = FilelRec + 1

End
Ret urn
%o * [
/* Read a record fromFile 2 */
%o * [
ReadFi | e2:

If File2Rec > Fil e2Lines.0 then
Fil e2Li ne = "99999"
El se Do

Fil e2Line = | eft(Fil e2Lines.

Fil e2Rec = Fil e2Rec + 1;

End
Ret urn
[e e e */
/* Finalization */
[e e e */
Proc99:

Say “I'n FILE2, not in FILEL:"
Say "In FILEl, not in FILE2:"
Say "lIn Both -

ne then do

ly + 1

but not in FILE1"

next record fromFile 1

ly +1
but not in FILE2"
next record fromFile 2

/* "end of file" */

. Fil elRec, 5)

/* "end of file" */

Fi | e2Rec, 5)

For Mat (I nFil elOnly, 5)
Format (I nFil e2Onl y, 5)
For Mat (I nBot h, 5)

Page [171]

*/
*/

*/

*/

COMPDS - Compar e two sequential datasets

This exec will call IEBCOMPR to compare two datasets. Y ou don't get a
comprehensive and detailed listing of differences. Instead, you get notification as to
whether the two datasets contain exactly the same data- a check that isrequired in a
parallel test.

/* Conpare - Conpare Two Datasets - Rexx Exec */
/* Witten by Dave G und */

Arg | PDSNL | PDSN2

If Arg() == 0 then do
Say "Conpare - Conpare two TSO dat asets”
Say " Type:

Synt ax: Conpare | PDSN1 | PDSN2"
Say " Pl ease reenter this comuand”
Exi t

End

I f SYSDSN(IPDSN1) = "OK' then nop
El se do
Say "l cannot find "I PDSN1
Exi t
End

If Arg(2) =="'" then nop

El se do
Say "Pl ease enter the name of the second dataset”
Pul | | PDSN2

End

I f SYSDSN(IPDSN2) = "OK" then nop
El se do
Say "l cannot find "I PDSN2
Exi t
End

"Free fi(sysutl,sysut?2,sysin,sysprint)"”
“"All ocate Fi (SYSUT1) DA("IPDSNL") shr"
“"All ocate Fi (SYSUT2) DA("IPDSN2") shr"
"All ocate Fi (SYSIN) DUMW"

"All ocate Fi (SYSPRINT) DA(*)"

“Call ' SYS1.Linklib(lEBCOWR)""

Page [172]

COMPDSE — Compare Two Sequential Datasets - Enhanced

This exec will compare two sequential datasets, line-for-line, and report diferences.
Neither file is assumed to be in any kind of sequence. This differes from COMPDS in that
it does not call IEBCOMPR; it does the compares internaly.

The best thing about this tool isthat it can be copied and modified for speciaized
file compare needs.

/* COVWPDSE - Conpare Two Datasets - Enhanced REXX */
/* Witten by Dave G und */
/* This exec will conpare two sequential datasets, line-for-Iine.
We do not regard the input file's sequence. */
ARG | PDS1 | PDS2
Call ProcO1 /* Programlnitialization */
Call Proc02 /* Copy both datasets to an array */
Call Proc04 /* Conmpare files now */
Call Proc99 /* Finalization */
Exi t
/* __ */
/* Cal | ed Procedures */
/* __ */
/* ____________ */
/* Program lnitialization */
%o * [
ProcO1:

Say; Say; Say
Say "ConpDSE - Conpare Two Datasets - Enhanced”

If IPDS1 = "" 3 |PDS2 = "" then do
Say "Conmand Syntax: ConpPDS | PDS1 | PDS2"
Exi t

End

Say "Conparing "1PDS1 "to" |PDS2
Say "Proceeding..."

Return

[e e e */

/* Copy both datasets to arrays */
[e e e */

Proc02:

X = QutTrap("ON'); "Free Fi(IpFile) DA("IPDS1")"; X=CQutTrap("OFF")
"Alloc FI(IPFile) DA("IPDS1") SHR'

If RC> 0 then exit

"ExeclO * DiskR IPFile (Stem DSl1Lines. Finis "

"Free FI(IPFile)"

X = QutTrap("ON'); "Free Fi(lpFile)"; X=QutTrap("COFF")

Say DS1Lines.0 "lines were found in" |PDS1

X = QutTrap("ON'); "Free Fi (IpFile) DA("IPDS2")"; X=CQutTrap("OFF")
"Alloc FI(IPFile) DA("IPDS2") SHR'

If RC >0 then exit

"ExeclO * DiskR IPFile (Stem DS2Lines. Finis "

"Free FI(IPFile)"

Page [173]

X = QutTrap("ON'); "Free Fi(lpFile)"; X=QutTrap("COFF")
Say DS2Lines.0 "lines were found in" |PDS2
Return

/* ____________ */
/* Conpare the files now */
/* ____________ */
Proc04:
CGrEquals = 0; CrNEquals = 0;
Dol =1 to DS1Lines.0
I f DS1Lines.l = DS2Lines.| then
CGrEquals = CtrEquals + 1
El se do

CGrNEquals = GrNEquals + 1
Say "Records #"1" differ:"
Say "I PDS1: "DSlLi nes. |

Say "I PDS2: "DS2Li nes. |

Say
End
End

Ret urn
/* ____________ */
/* Finalization */
/* ____________ */
Pr oc99:

Say CtrEquals "records were identical"
Say CtrNEquals "records were different”
Return

Page [174]

COMPPDS - Comparetwo PDS's

This command will compare two partitioned datasets. One is considered a "test"
PDS, the other is considered a "production” PDS.
/* COWPPDS - Conpare PDS' s - REXX Exec */
/* Witten by Dave G und */
ARG Test PDS Pr odPDS

/* This command will conpare a "Test" PDS agai nst a "Production"” PDS. */

Call ProcO1 /* Programlnitialization */
Call Proc02 /* List First PDS Menbers to an Array */
Call Proc03 /* List Second PDS Menbers to an Array */
Call Proc04 /* Conpare files now */
Call Proc99 /* Finalization */
Exi t
/* __ */
/* Cal | ed Procedures */
/* __ */
/* ____________ */
/* Program lInitialization */
/* ____________ */
ProcO1:
Say " CompPDS - Conpare PDS' s"
If TestPDS = "" | PRODPDS = "" then do

Say "Conmand Type:

Synt ax: ConpPDS Test PDS Pr odPDS"
Exi t
End
Say "Conparing "TestPDS "to" ProdPDS
Say "Proceeding..."

Ret urn
[e e e */
/* List Menbers of TestPDS */
[e e e */
Proc02:
/* Say "Reading "TESTPDS"'..." */

Dunmmy = Qut Trap(" Test Mens. ", "*")

"LI STD " TestPDS "M

NunLi nes = TestMens.0 - 6

Say Nunii nes "Menber names were found in" TestPDS
Dunmy = Qut Trap(" OFF")

Numlest Recs = TestMens. 0 + 1
/* Clean up the array */
Dol =1to 6 ; TestMens.l ="" ; End
Dol =7 to Test Mens. 0
TestMens. | = strip(TestMens.)
End
Ret urn

/* List Menbers of ProdPDS */

Page [175]

Pr oc03:
/* Say "Reading "ProdPDS"..." */
Dunmy = Qut Trap("ProdMens. ", "*")
"LISTD " ProdPDS "M
NurLi nes = ProdMens.0 - 6
Say Nunii nes "Menber names were found in" ProdPDS
Dunmy = Qut Trap(" OFF")

NunProdRecs = ProdMens.0 + 1
/* Clean up the array */

Dol =1to 6 ; ProdMens.l ="" ; End
Dol =7 to ProdMens. 0
ProdMens.| = strip(ProdMens.)
End
Ret urn
/* ____________ */
/* Conpare the nmenber nanes now */
/* ____________ */
Proc04:
TestCurrRec = 6; ProdCurrRec = 6;
Cal| ReadTest /* Read first record from Test PDS */
Cal | ReadProd /* Read first record from ProdPDS */

InTestOnly = 0; InProdOnly = 0; InBoth = 0;

Do Forever
/* Say "Conparing " TestMem "to" ProdMem */
If Test Mem = ProdMem t hen do

I f Test Mem = "99999999" then Leave
If TestMem =" " then nop
El se do

InBoth = InBoth + 1

Call ConpMenbers /* Conpare the nmenbers */
End
Cal | ReadTest /* Read next record from Test PDS */
Cal | ReadProd /* Read next record from ProdPDS */

End

Else If Testmem < ProdMem t hen do
InTestOnly = InTestOnly + 1
Say TestMent in " TestPDS "but not in "ProdPds

Cal | ReadTest /* Read next record from Test PDS */
End
El se do
InProdOnly = InProdOnly + 1
Cal | ReadProd /* Read next record from ProdPDS */
End
End
Ret urn
/* ____________ */
/* Conpare the nmenbers, line for line */
/* ____________ */
ConpMenber s:
/* First, normalize the datasetnanes */
If Left(TestPDS,1) = """ then do
Test 1 PDSN = stri p(Test PDS)
Test | PDSN = Del Str(Testl PDSN, 1, 1)
| DLen = | engt h(Test | PDSN)
Test | PDSN = Del Str(Testl PDSN, | DLen, 1)
end

Page [176]

el se

Test | PDSN = Test DSN
TestI PDSN = "' "|| TestIPDSN | " ("] | Test Mem ") "
If Left(ProdPDS,1) = """ then do

Prodl PDSN = st ri p(ProdPDS)

Prodl PDSN = Del Str (Prodl PDSN, 1, 1)

| DLen = | engt h(Prodl PDSN)

Pr odl PDSN = Del St r (Prodl PDSN, | DLen, 1)

end
el se
Pr odl PDSN = Pr odDSN
Prodl PDSN = """ || Prodl PDSN | " ("|| ProdMem | ") " "

Address TSO

"Free fi (SYSUT1 SYSUT2 SYSPrint SYSIN"
"Alloc Fi(SYSUT1) Da("|| Test!|PDSN') SHR'
"Alloc Fi(SYsSUT2) Da("||Prodl PDSN') SHR'
"Alloc FI(SYSPrint) DUMW"

"Alloc FI(SYSIN DumMmw"

“Cal |l ' SYSL. LinkLi b(l EBCOWR)""

RtrnCD = RC
If RrrnCD = 0 then
Say TestMem ||": The nodul es are identical"
El se
Say TestMem ||": The nodules differ!"
Ret urn
%o * [
/* Read a record from Test PDS */
%o * [
ReadTest :

TestCurrRec = TestCurrRec + 1;
If TestCurrRec > NunTest Recs then

Test Mem = " 99999999" /* "end of file"
El se DO

Test Mem = Test Mens. Test Curr Rec

/* Say "l just read from TEST: " Test Mem */

End
Ret urn
%o * [
/* Read a record from ProdPDS */
%o * [
ReadPr od:

ProdCurrRec = ProdCurrRec + 1;
If ProdCurrRec > NunProdRecs then

ProdMem = "99999999" /* "end of file"
El se Do

ProdMem = ProdMens. ProdCurr Rec

/* Say "l just read fromPROD: " ProdMem */

End
Return
%o * [
/* Finalization */
%o * [
Pr oc99:
Say "In Test, not in prod:" InTestOnly
Say "In Prod, not in test:" InProdOnly
Say "lIn Both :" InBoth
Return

Page [177]

*/

*/

ConcatL - Concatenate Libraries
This command will concatenate a library to a current DDName's allocation.

If you wanted to add your Rexx Exec library to an existing SY SEXEC allocation,

you could do it two ways:

1) You could free SY SEXEC, and then reallocate al necessary libraries, including
your own. But that would make you dependent upon someone in Systems to
tell you when the normal alocation (all necessary libraries) changes.

2) You could smply add your library to the current concatenation, using this
example. Thisway, if the "necessary library" sequence changes, you will not be
affected. Your library will always be concatenated to that set.

/* ConCatL - Allocate a library to an exiting concatenation REXX */
Arg SearchDD Li bToAdd

Li bToAdd = "' "Li bToAdd"" " /* Add sonme quotes */

Found = "NO'

Concat = "" /[* Set to null in case DDNane not allocated */
Dunmmy = Qut Trap("Sysoutline.”,"*") /* Start capture */
"Li st ALC St at us”

Dunmy = Qut Trap(" OFF") /* Stop Capture */
Dol =1 to Sysoutline.O

/* Say "looking at " Sysoutline.l */
If SubStr(Sysoutline.l,3,8) = SearchDD then do
Found = "YES'
12 =1 -1
DSN = SubStr (SysoutLine.l2,1, 44)
DSN = stri p(DSN)

Concat = """ 33 DSN 33 "'" [* add apostrophe */
Leave |
End
End |
If Found = "YES" then do
Do 13 =1 +1to SysoutLine.0 - 1 by 2
14 =13 +1

If SubStr(Sysoutline.l14,3,8) <>"
t hen Leave

If SubStr(SysoutLine.13,1,2) <>" " then do
DSN = Substr(Sysoutline.|3,1,45)
DSN = stri p(DSN)
Concat = Concat 33 " '" 33 DGSN 33

End

End
End

"All ocat e DDNane(" SearchDD') SHR Reuse ",
"DSNane(" Concat Li bToAdd")"

Say "ConCatL added " LibToAdd "to" SearchDD'."
Return

Page [178]

CPDSIX — Compare Two PDS Indexes

This exec will smply compare the directories (or indexes) of two PDS's, and
report the differences. Thistool can be avery helpful quality control tool.

/* CPDSI X - Compare PDS | ndexes - REXX Exec */

/* Witten by Dave G und */
ARG | PPDS1 | PPDS2

Call ProcO1 /* Programlnitialization */

Call Proc02 * List First PDS Menbers to an Array */

Call Proc03 * List Second PDS Menbers to an Array */

Call Proc04 * Conmpare files now */

Cal | Proc99 * Finalization */

Exi t

/* __ */
/* Cal | ed Procedures */
/* __ */
/* ____________ */

/* Program lnitialization */

/* ____________ */

ProcO1:

Say; Say; Say;

Say "CPDSI X, Conparing..."
Say "PDS1: "I PPDS1

Say "PDS2: "1 PPDS2

Ret urn
[e e e */
/* List Menbers of | PPDS1 */
[e e e */
Proc02:
/* Say "Reading "IPPDS1"..." */

Dummy = Qut Trap("PDS1Mens. ", "*")

"LISTD " | PPDS1 "M

NunLi nes = PDS1Mens.0 - 6

Say Nunii nes "Menber names were found in" | PPDS1
Dunmy = Qut Trap(" OFF")

NunmPDS1Recs = PDS1Mens.0 + 1
/* Clean up the array */

Dol =1to 6 ; PDSIMens.l ="" ; End
Dol =7 to PDS1Mens. 0
PDS1Mens. | = strip(PDS1Mens. |)
End
Ret urn
/* ____________ */
/* List Menbers of | PPDS2 */
/* ____________ */
Proc03:
/* Say "Reading "IPPDS2"..." */

Dummy = Qut Trap("PDS2Mens. ", "*")

"LISTD " | PPDS2 "M

NunLi nes = PDS2Mens.0 - 6

Say Nunii nes "Menber names were found in" | PPDS2
Dunmry = Qut Trap(" OFF")

Page [179]

NunmPDS2Recs = PDS2Mens. 0 + 1
/* Clean up the array */

Dol =1to 6 ; PDS2Mens.|l ="" ; End
Dol =7 to PDS2Mens. 0
PDS2Mens. | = stri p(PDS2Mens. 1)
End
Ret urn
/* ____________ */
/* Conpare the nmenber nanes now */
/* ____________ */
Proc04:
PDS1Curr Rec = 6; PDS2Curr Rec = 6;
Cal | ReadPDS1 /* Read first record from|PPDS1 */
Cal | ReadPDS2 /* Read first record from | PPDS2 */

I nPDS1Only = 0; InPDS2Only = 0; InBoth = O;

Do Forever
/* Say "Conparing " PDS1Mem "to" PDS2Mem */
| f PDS1Mem = PDS2Mem t hen do
I f PDS1Mem = "99999999" then Leave

If PDSIMeEmM = " " then nop
El se do
InBoth = InBoth + 1
End
Cal | ReadPDS1 /* Read next record from | PPDS1 */
Cal | ReadPDS2 /* Read next record from | PPDS2 */
End

El se | f PDS1nem < PDS2Mem t hen do
I NnPDS1Only = InPDS1Only + 1
Say PDS1IMent in PDS1 but not in PDS2"
Cal | ReadPDS1 /* Read next record from| PPDS1 */
End
El se do
I nPDS2Only = InPDS2Only + 1
Say PDS2Ment in PDS2 but not in PDS1"
Cal | ReadPDS2 /* Read next record from | PPDS2 */
End
End
Ret urn

ReadPDS1:
PDS1CurrRec = PDS1CurrRec + 1;
| f PDS1Curr Rec = NunPDSl1Recs t hen
PDS1Mem = "99999999" /* "end of file" */
El se DO
PDS1Mem = PDS1Mens. PDS1Curr Rec
/* Say "l just read fromPDS1: " PDS1Mem */

End
Ret urn
%o * [
/* Read a record from | PPDS2 */
%o * [
ReadPDS2:

PDS2Curr Rec = PDS2CurrRec + 1;

Page [180]

| f PDS2Curr Rec = NunPDS2Recs t hen
PDS2Mem = "99999999"
El se Do
PDS2Mem = PDS2Mens. PDS2Cur r Rec
/* Say "l just read fromPDS2: " PDS2Mem */

End
Ret urn

"In PDS1, not in PDS2:"
"In PDS2, not in PDS1:"
"In Both o

/* "end of file"

| NnPDS1Onl y
| NnPDS2Onl y
| nBot h

Page [181]

*/

DD - Add a DD Statement

This command will add the JCL for an output disk DD statement. It is designed for
JES2, and will also generate a delete step.

/* DD - ISPF Edit Macro (REXX EXEQ) */
/* Witten by Dave G und */
ADDRESS "I SREDI T" " MACRO PROCESS'

address "| SREDI T" " (XDSN) =DATASET"

address "I SREDI T" " (XMEM) =MEMBER"

/* First get the user IDfroma list */

User I D = sysvar (SYSUl D)

User Nanme = "an unknown TSO user"

If UserlD = "GRUND' then UserNane = "Dave G und"
Say "UserI D =" UserID"; Nanme =" User Nane

QurDSN = User I D| | ". what ever™

/* Now create the JCL statenents */

Jo1l = "/ /*"

J021 = " K "

J022 = M *"

JO3 = "//* STEPNN1 - |EFBR14 - DELETE QUTPUT DATASETS"

J04 = "//STEPNN1 EXEC PGW| EFBR14"

JO5 = "//DELDS DD DSN="||QurDSN |","

Joé = "// DI SP=(MOD, DELETE) , UNI T=SYSDA, SPACE=(TRK, (0))"
Joz = "//*"

JO8 = "//* Qutput file description”

J09 = "//filenam DD DSN="||QurDSN|","

Jio = "// DI SP=(NEW CATLG, DELETE) , "

Ji1 = "// UNI T=SYSDA, SPACE=(080, (123, 123), RLSE) , AVGREC=U, "
Ji3 = "// DCB=(DSORG=PS, RECFM=FB, LRECL=080, BLKSI ZE=0) "

/* Now insert theminto the currently-edited nenber */

address "I SREDI T" "LINE_AFTER O =" "'"JO1"'"
address "I SREDI T" "LINE_AFTER 1 =" "'"J021""J022""'"
address "I SREDI T" "LINE_AFTER 2 =" "'"J0O3""'"
address "I SREDI T" "LINE_AFTER 3 =" "'"J021""J022"""
address "I SREDI T" "LINE_AFTER 4 =" "'"J04"'"
address "I SREDI T" "LINE_AFTER 5 =" "'"J0O5""'"
address "I SREDI T" "LINE_AFTER 6 =" "'"J06"'"
address "I SREDI T" "LINE_AFTER 7 =" "'"JO7""'"
address "I SREDI T" "LINE_AFTER 8 =" "'"J08"'"
address "I SREDI T" "LINE_AFTER 9 =" "'"J09"'"
address "I SREDI T" "LI NE_AFTER 10 =" "'"J10""'"
address "I SREDI T" "LI NE_AFTER 11 =" "'"J11""'"
address "I SREDI T" "LINE_AFTER 12 =" "'"J13"""

/* NOWPUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */
ADDRESS " | SREDI T* "LABEL 2 START "

ADDRESS " | SREDI T* "LABEL 3 END "

ADDRESS "I SREDI T" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"
ADDRESS " | SREDI T* " RESET"

=.L
=.L

ADDRESS "I SREDI T* "CQursor = 1 0"

address "I SREDI T* "LINE_AFTER O = Not eLi ne",
"'--- This is the delete step ---------------------------

Page [182]

address "I SREDI T" "LI NE_AFTER 7 = Not eLi ne",

--- The output DD specification follows ---------------

address "I SREDI T" "LI NE_AFTER 13 = Not eLi ne",

address "I SREDI T" "LI NE_AFTER 13 = Not eLi ne",

--- Constructed especially for " || UserName """

Page [183]

DELDUPS - Delete Duplicate Records

/* Del Dups - Delete Duplicate Lines REXX Exec */
/* Witten by Dave G und */
ADDRESS | SREDI T

' MACRO (begcol endcol)’

If Begcol ="'7?" then do
zedsnsg = ' Del Dups begcol , endcol
zedl nsg = ' Command syntax: Del Dup begi nning col, ending col’
signal quitne
end
nuncheck = DATATYPE(begcol , N) /* Determine if any parms have */
I f NunCheck /= 1 then BegCol =1 /* been passed. */

nuncheck = DATATYPE(endcol , N)
If NunCheck /=1 then "ISREDIT (endcol) = LRECL

"ISREDIT (currline)
"ISREDIT (lastline)
"ISREDIT (cl,cc)
DupCnt =0
Do currline =1 to lastline - 1

If CurrLine > (LastLine - 1) then |eave

"ISREDIT (linel) = LINE currline

linel = substr(linel, begcol, (endcol - begcol) + 1)

nextline = currline + 1

"ISREDIT (line2) = LINE nextline /* get next record */

LI NENUM . ZFI RST* /* save starting record # */
LI NENUM . ZLAST' /* save ending record # */
CURSOR /* save cursor position */

line2 = substr(line2, begcol, (endcol - begcol) + 1)
If linel == line2 then do
DupCnt = DupCnt + 1
"ISREDIT LABEL " currline " = A"
"I SREDI T LABEL " nextline " = .B"
"ISREDIT Delete " nextline
currline = currline - 1 ; lastline = lastline - 1
end
end
zedsnsg = DupCnt ' DUPS Del et ed'
zedl nsg = DupCnt 'duplicate |ines were del eted
Qui t re:

ADDRESS | SPEXEC
' SETMSG MsE | SRZ000) '
EXIT O

Page [184]

DURATION - Timean EXEC

This Rexx exec can be modified to time the processing of a command. It's a good
ideato do thisis some of the longer-running execs, or to brag about how fast your exec
can accomplish something!

/* Duration - Rexx EXEC */

/* Witten by Dave G und */

/* This command will test the code to performa calcul ation
of command duration */

STime = Time(E) /[* Start time */

Say "I amwaiting for you to hit enter!™

Pul | Answer

ETime = Tine(E) /* End Time */

Duration = ETinme - STine
Say "This conmand took” Duration "seconds!"

Page [185]

FindMem - Find a Member in a Concatenation

This Rexx exec will search a concatenated set of libraries for a specific member
name. Thisis useful for when you want to know exactly which library an ISPF panel or a
Rexx Exec is being executed from.

This command can a so be executed in batch to look for copybooks or load
modules in a concatenation.

/* FindMem - Find a Menber in a Concatenation REXX */

ARG CQur DD Qur Mem

Call ProcO1 /* Initialization */
Call Proc02 /* ListAto an array */
Call Proc03 * Adjust the array */
Call Proc04 * Renove 'KEEP' |ines */
/* Call Proc05 */ /* Wite the array to a dataset and view it */
Call Proc06 * |solate the DD */
Call Procl0 * Now search each PDS */
Exi t
/* ___________ */
/* ProcOl - Initialization */
/* ___________ */
ProcO1:
If QurDD ="" 3 QurMem = "" then do
Say "Conmand syntax: Fi ndMem DDNane MenNane"
Exi t (16)
End
Ret urn
/* ___________ */
/* Proc02 - ListAto an array */
/* ___________ */
Proc02:
Dunmmry = Qut Trap("output_line.","*")
"LI STA SY ST"
NumlLi nes = Qut Put _Line. 0
/* Say NumlLines "lines were created" */
Dunmy = Qut Trap(" OFF")
Ret urn
/* ___________ */
/* Proc0O3 - Adjust the array */
/* ___________ */
Proc03:
/* Move the line with the DDNAME above the first datasetnanme
that it is concatenated to. It is currently bel ow */
Do I =1 to NunLines
Col1_2 = SubStr(QutPut_Line.l,1,2)
Col 3 = SubStr(QutPut_Line. I, 3,1)
Col 12_15 = SubStr(QutPut _Line. I, 12, 4)
If Coll 2 =" ' &,

Page [186]

Col3 /=" "1 &,
Col 12_15 = ' KEEP' then do

J=1-1
SavelLi ne = QutPut _Line.lI
Qut put_Line.l = QutPut_Line.J
Qut put _Li ne.J = SavelLi ne
end
end
Ret urn
/* ___________ */
/* Proc0O4 - Renpve all lines that say only "KEEP" */
/* ___________ */
Proc04:
J=20 /* Qutput array counter */
Do I =1 to NunLines

Thi sLine = strip(Qutput_Line.l)
If (left(ThisLine,4) ="'KEEP') 3 ,
(left(ThisLine,8 = "'TERMFILE) then nop=nop

El se do
J=J + 1, NewArray.J = QutPut_Line.|
End
End
NewArray.0 = J
Ret urn
A . */

/* ProcO5 - Wite the Array to a dataset and viewit */

Pr oc05:
"Delete la.list"
"Al'l ocate DD(LALi st) DA(LA.List) new space(1l 1) tracks",
"LRECL(80) Bl ock(5600) recfnm(f b) RETPD(O)"

"Execl O' NewArray.O0 "Di skWLALi st (STEM NewArray. FIN S
"Free DDNAME(LaList) DA(La.List)"

ADDRESS " | SPEXEC' "Vi ew Dat aset (La. List)"
Ret urn

J = O /* DSNArray counter */

1 to NewArray.O
eft(NewArray.1,2) ="' ' then
DDName = left(strip(NewArray.1l), 8)
el se do
Thi sRec = DDNane33stri p(NewArray.)
J=J + 1, DSNArray.J = Thi sRec

end
End
DSNArray.0 = J
/* Dol =1 to DSNArray. O
Say DSNArray. |
End */
Ret urn

Page [187]

/* Procl0 - Search each DSN for our nenber nane */

A . */
Proc10:
DDFound = 0 ; MenFnd = O
Dol =1 to DSNArray. O

If left(DSNArray.1,8) = QurDD then do
DDFound = DDFound + 1
DSN = strip(substr(DSNArray.i,9,63))
/* Say "Looking through DSN' DSN */
Call Proc101 /* Check this DSN */
End
End
Say "All together, | found "DDFound” DSN s allocated to DDName " Qur DD
TWrd = "tinmes'; If MenFnd = 1 then TWrd = "tine'
Say "l found nmenber "CQurMem Mentnd TWord"."

Ret urn

A . */

/* Procl01l - Search this DSN for our nmenber nane */
A . */

Proc101:

/* First make sure this dataset is a PDS */
RC = ListDSI("""DSN''" Directory)
If RC> 0 then do
Say 'Error processing ' DSN
Say SYSMSGLVL1; Say SYSMSGLVL2 ; Say
Ret urn
End
| f SYSDSORG = "PO' then do
Dummy = Qut Trap("PDSLi nes. ™, "*")
"LISTD '"DSN'"'" M
Nunii nes = PDSLi nes. 0
Dunmy = Qut Trap(" OFF")
Do K =6 to PDSLi nes. 0
/* Say "The line is: "PDSLines.K */
I f Pos(Qur Mem PDSLi nes.K) > 0 then do
Say "I found menber "QurMent in "DSN
Mentnd = MenFnd + 1
End
End
End
El se
Say "Dataset "DSN' is not a PDS."
Ret urn

Page [188]

FixJCL - Fix Job Control

FixJCL is aRexx exec that will read a set of Mainframe JCL, and make certain
format changes.

Granted that these format changes are to personal style and specifications: it puts
the datasetname on the first line, the disposition parameters on the second line (unless they
are short), the space parameters together on the next line, the DCB parameters on the
next, and anything else on the last.

The beauty of thisexec isthat it parses the JCL, and isolates just about every
"common" JCL field, so if you didn't want to create finished, or "fixed" JCL, you could do
whatever processing you wanted. Additionally, the code is all there, so you could make
any desired enhancements.

The exec first reads the JCL into an array, parses and identifies it, and then creates
afile of fields. The code to catalogue this particular file has been commented out, but for
testing or development, you would want to open this code back up.

That array is then read, and the final JCL fileis created.

Please note that the objective of this exec istwofold: to present a usable tool, and
to provide the code to enhance the tool. Thereisalot of room for improvement in this
particular tool. It isn't meant to be afinished and shiny product. It is meant to accomplish
something very useful, and allow the user to make any desired improvements or
enhancements to something that has a good, solid base.

The code, in its entirety, follows:

/* FixJCL - Create a Fixed File of JCL - REXX Exec */
ARG | PDSN

Call ProcO1 /* Programinitialization */
Call Proci0 /* Parse the JCL */
Call Proc30 /* Wite the control card array */
Cal | Proc40 /* Wite the fixed JCL */
Call ProcEQJ /* EQJ Processing */
Exi t

Qut put record layout: */
Cols 1-3: Record Type
Cols 4-72: text

1-- JOBCARD

101 Jobnane

102 Accounting Info

103 Routing Info

104 MSGLEVEL

105 MSGCLASS

106 CLASS

Page [189]

107 NOTI FY

199 Gt her info

4- - STEP/ EXEC

401 St epnane

402 PGVF or procnane
403 PARM

404 COND

405 REG ON

5-- DD St at enent

501 DDNane

508 AVGREC

509 DCB first positional
510 DCB DSORG
511 DCB RECFM
512 DCB LRECL
513 DCB BLKSI ZE
514 LABEL

515 COPI ES

516 DEST

517 HOLD

518 TRTCH

519 QUTPUT

ProcO1:
"Del Stack"
If IPDSN = "" then do
Say "Conmand syntax: Fi xJCL DSN'
Exi t
end

Say "FixJCL Wrking on " IPDSN ": ",
sysvar (SYSUI D) Date(U Time() "..."

Call Proc0O1l1 /* Read the JCL into an array */
Expecti ngConti nuation = "N
OpCQr =0
Obata. 0 = OpCtr /* Create the output array */
Spaces =" "
Return
/* ____________ */
/* Read the JCL into an array */
/* ____________ */

Page [190]

Proc011:
"Alloc DDN(InFile) DSN("IPDSN') SHR'
If RC <> 0 then do
Say "l could not allocate "IPDSN'. Sorry."
Exi t
end
"ExeclO * DiskR InFile (StemJCL. Finis"
"Free FI(InFile)"
Say "I read "JCL.0" lines of JCL into the array
Return

%o * [
/* Parse the JCL */
%o * [

/* This routine will parse the JCL, and create an array of

control cards representing the JCL val ues */
Proc10:
Dol =1to JCL.O
Record = strip(left(JCL.1,72)) /* Look at only cols 1-72 */
Call Proc2 * Parse/identify the stnt */
If RecID = "J" then Call Proc230 * Job card */
If RecID = "E" then Call Proc240 * Exec card */
If RecID = "D' then Call Proc250 * DD card */
If RecID = "A" then Call Proc260 * data card */
If RecID = "C" then Call Proc270 * Comment card */
If RecID = "0 then Call Proc280 * Qutput Card */
If RecID = "U' then Call Proc290 * Unknown card */
End
Return
/* ____________ */
/* Parse and identify the JCL Statenment */
/* ____________ */
Proc20:
Parse Var Record Piecel Piece2 Piece3
| f ExpectingContinuation = "Y" then Return
ReclD = "U' /* Unknown */
If left(Record,1) /="/" then RecID = "A" /* Data */
If left(Record,3) ="//*" then RecID = "C' /* Comrent */
El se
If left(Record,2) = "//" then do
If strip(Piece2) ="JOB" then RecID = "J" /* Job card */
If strip(Piece2) = "EXEC' then RecID = "E" /* Execute card */
If strip(Piece2) = "DD then RecID = "D' /* DD card */
If strip(Piece2) = "QUTPUT" then RecID = "O' /* Qutput card
End
/* Say "The follow ng record:"
Say Record
Say "has been identified as "RecID */
Return
/* ____________ */
/* Process Job Card */
/* ____________ */
Proc230:
/[* If this is the first card of a set, then the variable
ExpectingContinuation will be "N'. For all other cards,
will be "Y. */
I f ExpectingContinuation = "N' then JobCard = Record
El se Jobcard = Jobcard| | Pi ece2

Page [191]

*/

If right(Record,1) ="',' then ExpectingContinuation = "Y"

El se do /* W& have read the final job card */
Expecti ngConti nuation = "N'
Call Proc2301 /* Parse the job statenment */
Call Proc2302 /* Wite themto the array */
End
Return
/* ____________ */
/* Parse the Job Statenment */
/* ____________ */
Proc2301:
Parse Var Jobcard Piecel Piece2 Piece3
V101 = Del Str(Piecel, 1, 2) /* Job name */
Parse var Piece3 V102 "," Piece3 /* Job accounting info */
If left(Piece3,1) = """ then Piece3 = Del Str(Pi ece3, 1,1)
Parse var Piece3 V103 "'" Piece3 /* Routing info */
V104 =" " ; V105 ="" ; V106 = ""; V1IO7 = "" ; V199 = ""
Parse var Piece3 PJ1 "," PJ2 "," PJ3 "," PJ4 ", " |,
PJ5 "," PJ6 "," PJ7 "," PJ8

DoJ=1to 8
Thi sArg = Val ue(PJ||J)
If left(ThisArg,9) = "MSGEVEL=" then do
V104 = right (Thi sArg, 1)

Thi sPos = | ndex(Pi ece3, Thi sArg) /* Del */
Pi ece3 = Del Str(Pi ece3, Thi sPos, | engt h(Thi sArg) +1)
End

If left(ThisArg,9) = "MSGCLASS=" then do
V105 = right (Thi sArg, 1)

Thi sPos = | ndex(Pi ece3, Thi sArg) /* Del */
Pi ece3 = Del Str(Pi ece3, Thi sPos, | engt h(Thi sArg) +1)
End

If left(ThisArg,6) = "CLASS=" then do
V106 = right (ThisArg, 1)

Thi sPos = | ndex(Pi ece3, Thi sArg) /* Del */
Pi ece3 = Del Str(Pi ece3, Thi sPos, | engt h(Thi sArg) +1)
End

If left(ThisArg,7) = "NOTl FY=" then do
V107 = Del Str(ThisArg, 1, 7)

Thi sPos = | ndex(Pi ece3, Thi sArg) /[* Del */
Pi ece3 = Del Str(Pi ece3, Thi sPos, | engt h(Thi sArg) +1)
End
End
V199 = V199| | Pi ece3 /* Whatever is left */
If left(Vv199,1) = "," then V199 = Del Str(V199, 1, 1)
If right(Vv199,1) = "," then V199 = Del Str(V199, | engt h(V199), 1)
Return
/* ____________ */
/* Wite the job information to the array */
/* ____________ */
Proc2302:
OCr = Cr + 1 ; Obata. OpCr = "101"|]| V101
OCr = Cr + 1 ; Obata. OQpCir = "102"|| V102
OCr = Gr + 1 ; Obata. OpCr = "103"|| V103
OCr = Gr + 1 ; Obata. OpCir = "104"|| V104

Page [192]

pCr = Cr + 1 ; OData. Ctr = "105"|| V105
pCr = Cr + 1 ; OData. pCtr = "106"| | V106
OpCr = CGr + 1 ; OData. Ctr = "107"]|| V107
OpCr = Cr + 1 ; OData. Ctr = "199"|| V199

Ret urn

[e e e */

/* Execute Card */

[e e e */

Proc240:

/[* If this is the first card of a set, then the variable
ExpectingContinuation will be "N'. For all other cards, it

will be 'Y. */
I f ExpectingContinuation = "N' then ExecCard = Record
El se ExecCard = ExecCard| | Pi ece2
If right(Record,1) ="',' then ExpectingContinuation = "Y"
El se do /* W have read the final card */

Expecti ngConti nuation = "N
/* Say "The entire execute statenment follows" */

/* Say ExecCard */
Call Proc2401 /* Parse the exec statenent */
Call Proc2402 /* Wite themto the array */
End

Ret urn

/* ____________ */

/* Parse the Exec Statenent */

/* ____________ */

Proc2401:

/* Wth the job statenent, we parse the whole thing at once.
We cannot do that with the Exec, because of operands that begin in

a left parenthesis, like the COND. Therefore, we have to

"break off" a piece at a tine. */
V402 =" " ; V403 = ""; V404 = "" ; V405 = "";

V499 = "" /[* Init vars */

Parse Var ExecCard Piecel Piece2 Piece3
V401 = Del Str(Piecel, 1, 2) /* Step nane */
Pi ece3 = strip(Piece3)

Do 10 /* There shouldn't be nmore than this */
If left(Piece3,1) = "," then Piece3 = Del Str(Piece3, 1,1)
If left(Piece3, 4 = "PG¥ " then do

Parse Var Piece3 V402 "," Piece3
V402 = right (V402, | engt h(V402) - 4)
End
If left(Piece3, 6) = "PARME " then do
Pi ece3 = Del Str(Piece3, 1, 6)
Parse Var Piece3 V403 "'" Piece3
End
If left(Piece3, 6) = "PARM=(" then do

Pi ece3 = Del Str(Piece3, 1, 6)
Parse Var Piece3 V403 ")" Piece3

End

If left(Piece3, 5 = "PARME" then do
Parse Var Piece3 V403 "," Piece3
V403 = right (V403, | engt h(V403) - 5)

End

Page [193]

If left(Piece3, 6) = "COND=(" then do
Pi ece3 = del str(Piece3, 1, 6)
Parse Var Piece3 V404 ")" Piece3

End
If left(Piece3, 7) = "REA ON=" then do
Parse Var Piece3 V405 "," Piece3
V405 = right (V405, | engt h(V405) - 7)
End
End
V499 = V499| | Pi ece3 /* \Whatever is left */

Ret urn

/* ____________ */

/* Wite the job information to the array */

/* ____________ */

Proc2402:
OCQr = CGr + 1 ; Obata. OpCir = "401"|| V401
OCQr = OCr + 1 ; Obata. OpCir = "402"|| V402
OCQr = Gr + 1 ; Obata. OpCir = "403"|| V403
OCr = CGr + 1 ; Obata. OpCir = "404"|| V404
OCQr = Gr + 1 ; Obata. OpCir = "405"|| V405
OCQr = Cr + 1 ; Obata. OpCir = "499"|| V499

Ret urn

/* ____________ */

/* DD Card */

/* ____________ */

Pr oc250:

/[* If this is the first card of a set, then the variable
ExpectingContinuation will be "N'. For all other cards, it

will be '"Y. */
I f ExpectingContinuation = "N' then DDCard = Record
El se DDCard = DDCar d| | Pi ece2
If right(Record,1) ="',' then ExpectingContinuation = "Y"
El se do /* W have read the final card */

Expecti ngConti nuation = "N
/* Say "The entire DD statement follows" */

/* Say DDCard */
Call Proc2501 /* Parse the exec statenent */
Call Proc2502 /* Wite themto the array */
End

Ret urn

/* ____________ */

/* Parse the DD Statenment */

/* ____________ */

Proc2501:

/* Wth the job statenent, we parse the whole thing at once.
We cannot do that with the DD, because of operands that begin in
a left parenthesis. Therefore, we have to "break off" a piece

at a tinme. */

V501= ""; V502= ""; V503= ""; V504= ""; V505="";

V506= ""; V507= ""; V508= ""; V509= ""; V510= "";

V511= ""; Vb12= ""; V513= ""; V514= ""; V51b6= "";

V516= ""; Vb517= ""; V518= ""; V519= ""; V520="";

V521="";

DCBStnmt= "";

V599= "" /* Init vars */

Page [194]

Parse Var DDCard Pi ecel Piece2 Piece3
V501 = Del Str(Piecel, 1, 2) /* DD Name */
Pi ece3 = strip(Piece3)

Do 20 /* There shouldn't be nore than this */
If left(Piece3,1) = "," then Piece3 = Del Str(Piece3,1,1)

If left(Piece3, 8) = "SYSQUT=(" then do
Pi ece3 = Del Str(Piece3, 1, 8)
Parse Var Piece3 V502 ")" Piece3

End

If left(Piece3, 7) = "SYSQUT=" then do
Parse Var Piece3 V502 "," Piece3
V502 = right (V502, | engt h(V502)-7)

End

If left(Piece3, 5 = "DUMW" then do
Parse Var Piece3 V503 "," Piece3

End

If left(Piece3,4) = "DSN=" then do
Parse Var Piece3 V504 "," Piece3
V504 = right (V504, | engt h(V504) - 4)

End

If left(Piece3,7) = "DSNAME=" then do
Parse Var Piece3 V504 "," Piece3
V504 = right (V504, | engt h(V504)-7)

End

If left(Piece3, 6) = "D SP=(" then do

Pi ece3 = Del Str(Piece3, 1, 6)
Parse Var Piece3 V505 ")" Piece3

End

If left(Piece3, 5 = "D SP=" then do
Parse Var Piece3 V505 "," Piece3
V505 = right (V505, | engt h(V505) - 5)

End

If left(Piece3, 5 = "UNT=" then do
Parse Var Piece3 V506 "," Piece3
V506 = right (V506, | engt h(V506) - 5)

End

If left(Piece3, 6) = "SPACE=" then do
Pi ece3 = Del Str(Piece3, 1, 6) /* Delete the string */
Call Proc810; V507 = Result /* Call nest isolator */
End
If left(Piece3, 5 = "DCB=(" then do
Pi ece3 = Del Str(Piece3, 1,5)
Parse Var Piece3 DCBStm ")" Piece3

Call Proc2509 /* Parse the DCB statenent */
End
If left(Piece3,4) = "DCB=" then do

Parse Var Piece3 DCBStmt "," Piece3

DCBStnt = right (DCBStnt, | engt h(DCBSt nt) - 4)

Call Proc2509 /* Parse the DCB statenent */
End
If left(Piece3, 6) = "LABEL=" then do

Parse Var Piece3 V514 "," Piece3

V514 = right (V514, | engt h(V514) - 6)
End

If left(Piece3,7) = "COPIES=" then do
Piece3 = Del Str(Piece3,1,7) /* Delete the string */
Call Proc810; V515 = Result /* Call nest isolator */

Page [195]

End

If left(Piece3, 5 = "DEST=" then do
Parse Var Piece3 V516 "," Piece3
V516 = right (V516, | engt h(V516) - 5)
End
If left(Piece3 5 = "HOD=" then do
Parse Var Piece3 V517 "," Piece3
V517 = right (V517,1 engt h(V517)-5)
End
If left(Piece3, 6) = "TRTCH=" then do
Parse Var Piece3 V518 "," Piece3
V518 = right (V518, | engt h(V518) - 6)
End
If left(Piece3, 8 = "OQUTPUT=(" then do
Pi ece3 = Del Str(Piece3, 1, 8)
Parse Var Piece3 V519 ")" Piece3
End
If left(Piece3, 7) = "QUTPUT=" then do
Parse Var Piece3 V519 "," Piece3
V519 = right (V519, | engt h(V519)-7)
End
If left(Piece3 8 = "VO=SER=" then do
Parse Var Piece3 V520 "," Piece3
V520 = right (V520, | engt h(V520) - 8)
End
If left(Piece3, 5 = "FREE=" then do
Parse Var Piece3 V521 "," Piece3
V521 = right (V521, 1 engt h(V521)-5)
End
End
V599 = V599| | Pi ece3 /* \Whatever is left
/* 1nmpose ny personal styles upon the val ues here */
If (left(V505,6) = ", CATLG") | ,
(left(Vvo05,5) = ",PASS") then V505 = "NEW || V505
Return
/* ____________ */
/* Wite the job information to the array */
/* ____________ */
Proc2502:
OCr = Cr + 1 ; Obata. OpCir = "501"|]| V501
OCQr = Cr + 1 ; Obata. OpCir = "502"|| V502
OCQr = Gr + 1 ; Obata. OCr = "503"|| V503
OCQr = Cr + 1 ; Obata. OpCir = "504"|| V504
OCQr = Gr + 1 ; Obata. OpCr = "505"|| V505
OCQr = Cr + 1 ; Obata. OpCr = "506"|| V506
OCr = OCr + 1 ; Obata. OpCir = "507"|| V507
OCr = Gr + 1 ; Obata. OpCir = "508"|| V508
OCr = Cr + 1 ; Obata. OpCir = "509"|| V509
OCr = Gr + 1 ; Obata. OpCr = "510"|| V510
OCr = Cr + 1 ; Obata. OpCir = "511"|| V511
OCr = Cr + 1 ; Obata. OpCir = "512"|| V512
OpCQr = Gr + 1 ; Obata. OpCtr = "513"|| V513
OCr = Cr + 1 ; Obata. OpCir = "514"|| V514
OCQr = Cr + 1 ; Obata. OpCr = "515"|| V515
OCQr = Gr + 1 ; Obata. OpCir = "516"|| V516
OCr = Cr + 1 ; Obata. OQpCir = "517"|| V517
OCr = Gr + 1 ; Obata. OpCtr = "518"|| V518
OCr = Cr + 1 ; Obata. OpCtr = "519"|| V519

Page [196]

*/

pCr = Cr + 1 ; Obata. Ctr = "520"|| V520
pCr = Cr + 1 ; Obata. pCtr = "521"|| V521
pCr = OCr + 1 ; ODbata. Ctr = "599"|| V599
Ret urn
[e e e */
/* Parse the DCB Statenent */
[e e e */
Proc2509:
Parse Var DCBStnt DCBTenp "," DCBStmt
If Pos('=",DCBTenp) = 0 then V509 = DCBTenp /* Model DSCB */
El se DCBStnt = DCBTenp||","| | DCBSt nt
Do 20 /* This should be nore than enough */
If left(DCBStnt,6) = "DSORG=" then do
Parse Var DCBStnt V510 "," DCBSt nt
V510 = right (V510, | engt h(V510) - 6)
End
If left(DCBStnt,6) = "RECFME" then do
Parse Var DCBStnt V511 "," DCBStnt
V511 = right (V511, 1 ength(V511) - 6)
End
If left(DCBStnt,6) = "LRECL=" then do
Parse Var DCBStnt V512 "," DCBSt nt
V512 = right (V512, 1 engt h(V512) - 6)
End
If left(DCBStnt,8) = "BLKSIZE=" then do
Parse Var DCBStnt V513 "," DCBSt nt
V513 = right (V513, 1 engt h(V513) - 8)
End
End
Ret urn
[e e e */
/* Data card */
[e e e */
Proc260:
pCr = Cr + 1 ; OData. Ctr = "601"| | JCL. I
Ret urn
[e e e */
/* Comment Card */
[e e e */
Proc270:
OpCr = OpCtr + 1 ; Obata. Ctr = "701"| | Record
Ret urn
[e e e */
/* Qutput Card */
[e e */
Proc280:
pCr = OpCtr + 1 ; Obata. pCtr = "801"| | Record
Ret urn
[e e e */
/* Unknown card */
[e e e */
Proc290:
pCr = OpCtr + 1 ; Obata. Ctr = "901"| | Record
Ret urn

Page [197]

/* Wite the control card file */

Vi ewData = fal se
If Viewbata = true then do
OPDSN = Fi xJCL. Dat a
"Del ete "OPDSN
"Allocate DD(QutFile) DA("OPDSN') new space(l 1) tracks",
"LRECL(80) Block(6160) recfm(f b) RETPD(O0)"

"Execl 0" OData.0 "DiskWQutFile (STEM OData. FIN S"
"Free DDNAME(QutFile)"

Say OpCtr "Records witten to "OPDSN

ADDRESS "| SPEXEC' "View Dataset("OPDSN')"

end
Return
/* ____________ */
/* Wite the fixed JCL */
/* ____________ */
Pr oc40:
Call Proc401 /* Create the Fixed JCL array */
Call Proc402 /* Wite the array to disk */
Return
/* ____________ */
/* Create the Fixed JCL Array */
/* ____________ */
Proc401:
QcLcr =0
Dol =1to Obata.O

/* Say "Proc401; i/p=" OData.l */

RecClass = left(OData.l, 1)
Recl D = left(OData.l, 3)
Text = Del Str(OData.l, 1, 3)

If (RecID = 401) | (ReclD = 501) | (ReclD
(RecID = 701) | (ReclD = 801) | (ReclD
/* Wite the previous recordset */
I f Lastd ass "1" then Call Proc40121 /* Job card */
I f Lastd ass "4" then Call Proc40124 /* Step/ Exec */
I f Lastd ass "5" then Call Proc40125 /* DD Statenent */

601) | ,
901) then do

End
Last d ass = Recd ass
If Text /="" then do

/* Set val ues */

If RecCass = "1" then Call Proc40111 /* Job card */

I f Recd ass "4" then Call Proc40114 /* Step/ Exec */

I f Recd ass "5" then Call Proc40115 /* DD Statenent */

End

If RecCass = "6" | , /* Data: wite ALL records */
RecC ass = "7" | , /* Comrent: wite ALL records */
RecC ass = "8" | , /* Qutput: wite ALL records */
RecCl ass = "9" then do /* Unknown: wite ALL records */
QICLGr = ACLar + 1; QCL. ACLCr = Text
Iterate

End

Page [198]

End

/* Wite the final class;
LastCl ass = | eft(OData. QJCLCTR, 1)
If LastClass = "1" then Call
If LastClass = "4" then Call
If LastClass = "5" then Call
If LastClass = "7" then Call

Ret urn

/* ____________ */

/* O ear Values */

/* ____________ */

d ear Val ues:
vioi=" "; V102=" "; V103="
vioe=" "; V107=" "; V199="
Vv401=" "; V402=" "; V403="
V499=" ";
V501=""; V502=""; V503="";
V506=""; V507=""; V508="";
V511=""; V512=""; V513="";
V516=""; V517=""; V518="";
V621="";
V599="";
SOLine = ""; USLine = "";

Ret urn

/* ____________ */

/* Process Job card */

/* ____________ */

Proc40111:
If ReclD = "101" then V101
If ReclD = "102" then V102
If ReclD = "103" then V103
If ReclD = "104" then V104
If ReclD = "105" then V105
If ReclD = "106" then V106
If ReclD = "107" then V107
If ReclD = "199" then V199

Ret urn

/* ____________ */

/* Process Step/Exec card */

/* ____________ */

Proc40114:
If ReclD = "401" then V401
If ReclD = "402" then V402
If ReclD = "403" then V403
If ReclD = "404" then V404
If ReclD = "405" then V405
If ReclD = "499" then V499

Ret urn

/* ____________ */

/* Process DD Card */

/* ____________ */

Proc40115:
If ReclD = "501" then V501

it's sitting in

DCBTenp = ;

core */

Proc40121 /*
Proc40124 [*
Proc40125 /*
Proc40127 [*

Job card */

St ep/ Exec */
DD St at enment
Comment

", V104=" "; V105=" "

", V404=" "; V405=" "

V504="",
V509="",
V514="",
V519="",

V505=""
V510=""
V515=""
V520=""

DDLi ne4 = ""

Text

Text

Text

"MBGLEVEL="| | Text
" MBGCLASS="| | Text
" CLASS="| | Text
"NOTI FY="| | Text
Text

Text

"PGVE"| | Text
"PARME' " Text """
"COND=("Text")"
"REGA ON="| | Text
Text

= Text

Page [199]

*/
*/

/* Construct the SYSQUT |ine */
If ReclD = "502" then do

If Text = "," then Text = "(,)"
V502 = " SYSQUT=" Text
SOLi ne = SQLi ne| | V502
End
If ReclD = "519" then do
If Pos(",",Text) > 0 then Text = "("Text")"
SOLi ne = SOLi ne", QUTPUT=" Text
End
If ReclD = "521" then do
If Pos(",",Text) > 0 then Text = "("Text")"
SOLi ne = SOLi ne", FREE=" Text
End
If ReclD = "503" then V503 = Text
If ReclD = "504" then V504 = "DSN="Text
If ReclD = "505" then do
If Pos(',',Text) = 0 then V505 = "Dl SP="Text
el se V505 = "Dl SP=("Text")"
End
/* Construct the UNIT and SPACE |ine */
If ReclD = "506" then USLine = USLi ne"UNl T="Text
If ReclD = "507" then USLi ne = USLi ne", SPACE=" Text
If ReclD = "508" then USLi ne = USLi ne", AVGREC=" Text
If ReclD = "520" then USLi ne = USLi ne", VOL=SER=" Text
If left(USLine,1) = "," then USLine = Del Str(USLine, 1, 1)
If ReclD = "509" then DCBTenp = DCBTenp| | Text
If ReclD = "510" then DCBTenp = DCBTenp", DSORG=" Text
If ReclD = "511" then DCBTenp = DCBTenp", RECFM=" Text
If ReclD = "512" then DCBTenp = DCBTenp", LRECL="Text
If ReclD = "513" then DCBTenp = DCBTenp", BLKSI ZE=" Text
If left(DCBTenp,1) = "," then DCBTenp = Del Str(DCBTenp, 1, 1)
/* Construct the "DD Line 4" */
If ReclD = "514" then DDLi ne4 = DDLi ne4" LABEL="Text
If ReclD = "515" then DDLi ne4 = DDLi ne4", COPl ES=" Text
If ReclD = "516" then DDLi ne4 = DDLi ne4", DEST="Text
If ReclD = "517" then DDLi ne4 = DDLi ne4", HOLD=" Text
If ReclD = "518" then DDLi ne4 = DDLi ne4", TRTCH=" Text
If left(DDLine4,1) ="," then DDLine4 = Del Str(DDLi ne4, 1, 1)
If ReclD = "599" then V599 = Text
Ret urn
/* ____________ */
/* Wite the Job card */
/* ____________ */
Proc40121:

V101 = | eft(V101| | spaces, 8)
Jcr = "//"vi01" JOB "|| V102", "' "V1i03"', "

Jc2 ="// "\V104", "V105", "V106", "V107
QICLGr = QCLCr + 1; QICL.ACLGr = JC1
If V199 = "" then do
QICLGr = QICLCr + 1; QICL.AJCLCr = JC2
End

Page [200]

El se do

Jc2 =Jez| |,
Jc3 = "// "V199
QcCLar = QCar + 1, QCL.ycCLar = JC2
QcLar = QCcar + 1; QCL.cCcLar = JC3
End
Cal I d ear Val ues;
Return
/* ____________ */
/* Wite the Step/ Exec card */
/* ____________ */
Proc40124:
V401 = | eft (V401| | spaces, 8)
JC1L = "//"V401" EXEC "|| V402
If V404 /= "" then JC1 = JC1", " V404
If V405 /= "" then JC1 = JC1", "V405
If V403 = "" then do
acLar = Qcar + 1, acL.acar = Jc
end
el se do /* There IS a parmfield */

if (length(JCl) + 1 + length(V403)) < 72 then do /* same line */
JC1 = JC1","Vv403

QICLCtr = QJCLCtr + 1; QiCL.AcCLar = JC1
end
el se do
Jcir = Jc|","
Jcz2 = "/1/ "V403
QICLCtr = QJCLCtr + 1; QiCL.AcCcLar = JC
QICLCtr = QJCLCtr + 1; QICL. ACLCGr = JC2
End
End
Cal|l d earVal ues;
Ret urn
/* ____________ */
/* Wite the DD Card */
/* ____________ */
Proc40125:
ci=""; Cc2=""; C3=""; Cc4=""; Cb=""; C6=""
V501 = | eft(V501| | spaces, 8) /* DDNane */

Cl = strip("//"V501" DD "SOLine||V503||V504)

/* There is al nost NEVER a good reason to say DI SP=(OLD, DELETE) .
At UMB, OLD, DELETE is used too frequently. Therefore,
i npose ny personal preferences and repl ace those. */
If left(V505,9) = "Dl SP=(COLD" then
V505 = "DI SP=SHR'| | ri ght (505, | engt h(V505) - 9)
If left(V505,8) = "D SP=CLD" then
V505 = "DI SP=SHR'| | ri ght (505, | engt h(V505) - 8)
If Ieft(V505,15) = "Dl SP=SHR DELETE" then
V505 = "Dl SP=SHR'

If Pos(',',DCBTenp) > O then DCBTenp = "DCB=("DCBTenp")"

If ((length(Cl) + 1 + length(V505)) < 72) &,
(V505 = "Dl SP=SHR"') then do

Cl = C1","V505
C = strip("// " USLi ne)
C3 =strip("// " DCBTenp)

Page [201]

CA = strip("//
C5 = strip("//
end
el se do
C = strip("//
C3 =strip("//
CA = strip("//
C5 = strip("//
C6 = strip("//
end
Do 4
| f
C3; a3
end
end

Iength(C2) < 3 then
4, A

" DDLi ne4)
"V599)

"V505)
"USLi ne)
" DCBTenp)
" DDLi ne4)
"V599)

do

C5; G5

/* See if we can (shoul d) conbine
If length(strip(Cl)) < 16 then do
2 Del Str(C2, 1, 11)

/* The 2nd card is conpletely blank */

C6;, C6 =

any JCL lines */

Cl=c¢C1" "2
C2 =C3;, G3=C4; 4 =0C; C5=¢Cp; C6 =""
End
/* See which |ines need contlnuatlon commas */
If length(C2) > 2 then C1 = CL||","
el se c2 =""
If length(C3) > 2 then C2 =C||","
el se c3=""
If length(C4) > 2 then C3 = C3||","
el se A4 =""
If length(C5) > 2 then &4 = 4| |","
el se G =""
If length(C6) > 2 then C5 = C5||","
el se c =""
QICLCtr = QJCLCr + 1; QCL.cCcLar = C1
If C2 /="" then do
QICLCtr = QJCLCr + 1; QICL. AcCLCGr = C2
End
If C3/="" then do
QICLCtr = QJCLCr + 1; QICL.JCLcr = C3
End
If &4 /="" then do
QICLCtr = QJCLCr + 1; QICL.QJCLcr = 4
End
If C5 /="" then do
QICLCtr = QJCLCr + 1; QICL.QJCLCGtr = C5
End
If G /="" then do
QICLCtr = QJCLCr + 1; QICL.QJCLCir = Co
End
Cal| d earVal ues;
Ret urn
/* ____________ */
/* Wite the Fixed JCL Array to Disk */
/* ____________ */
Proc402:
QICL.0 = ACLCr

Page [202]

OPDSN = Fi xJCL. JCL
If ACLGr = 0 then do
Say "There are no records to wite to" OPDSN'!"
Return
Exi t
End
"Del ete" OPDSN
"Allocate DD(QutFile) DA("OPDSN') new space(l 1) tracks",
"LRECL(80) Bl ock(6160) recfm(f b) RETPD(O)"

"Execl 0" QJCL.0 "DiskWQutFile (STEM QICL. FIN S"
"Free DDNAME(CQutFile)"

Say QICLCtr "Records witten to "OPDSN

ADDRESS " | SPEXEC"' "Vi ew Dat aset (" OPDSN') "

Return

%o * [

/* Nested operand isolator */

[%o * [

/* This routine will isolate operands that are nested within

parenthesis. It is used mainly for COPI ES= and SPACE=.
Exanpl e: Piece3=(1,(1,1,1,1)), DEST=U98, HOLD=NO,
This routine will split Piece3 into:

(1,(1,1,1,1)) and DEST=W98, HOLD=NO, */
Proc810:
If left(Piece3, 1) = "(" then do /* May be nested */
ReturnStr = "(" ; Level = 1; Index = 2
Do Until Level =0
I f substr(Piece3,Index,1) = "(" then Level = Level + 1
I f substr(Piece3,Index,1) = ")" then Level = Level - 1
ReturnStr = ReturnStr|| substr(Piece3, | ndex, 1)
Index = Index + 1
End
Pi ece3 = Del Str(Piece3, 1, | ndex)
End
El se Parse var Piece3 ReturnStr "," Piece3 /* No nesting */

Return ReturnStr

[e e e */
/* End-of-job Processing */
[e e e */

Pr ocEQJ:

Return

Page [203]

FX - File name cross-reference

This exec will convert JCL into alist of stepnames and datasetnames, that can be used as
somewhat of a cross-reference.

/* FX - File Cross-Reference - REXX Exec */

* Witten by Dave G und */
* This exec will read a set of job control, parse it, and */
* create a file, one record per datasetnane, as foll ows: */
/* 1- 8 8 Jobnane */
* 9-16 8 Stepnane */
* 17-24 8 DDNane */
* 25-78 54 Datasetnane (allowi ng roomfor PDS nenber nane) */
* 79-81 3 Disposition (NEW OLD, MXD) */
A Mai n Body of Program---------------------------- */
ARG | PDSN
Call Pgmlnit
Do Forever
Cal | ReadRec /* Read rec into stack; count */
If IPEOF = "YES' then Leave
Pull Record /[* CGet it fromthe stack */
Call ldentifyRecord /* See what kind it is */
Cal | ProcessRecord /* Process it */
end
Call ProcEQJ /* EQJ) Processing */
/* ADDRESS "I SPEXEC' "Browse Dataset (" OPDSN")" */
Exi t
/* ___ */
/* ____________ */
/* Program lInitialization */
/* ____________ */
PgmlInit:
"Del Stack"
If IPDSN = "" then do

Say "Conmand Type:

Synt ax: FX DSN'
Exit
end

"Alloc DDN(InFile) DSN("IPDSN') SHR'

If RC <> 0 then do
Say "l could not allocate "IPDSN'. Sorry."
Exi t

end

Say "FX Working on " IPDSN ": " sysvar(SYSUI D) Date(U Tinme() "..."

OPDSN = FX. DATAFI LE
"Free FI(QutFile)"
"Alloc DD(QutFile) DA("OPDSN') MDD space(1l5 15) tracks ",
"Lrecl (81) Bl ock(6156) Recfm(F B)"
If RC <> 0 then do
Say "l could not allocate "OPDSN'. Sorry."

Page [204]

Exi t

end
"NewSt ack"
| PECF = "NO' /* I nput EOF Switch */
RecType =" " /* Record Type */
Spaces =" "
Spaces = Spaces || Spaces /* Nowit's 72 spaces */
JobNarme = "(Unk)" * Job Nane */
St epName= " (Unk)" * Step Nanme */
DDNanme = "(Unk)" * DDNane */
RecCount =0 * Total Records */
TypelCQr =0 * First JCL card of a set */
TypellCr =0 * Job Cards */
Typel2Cr =0 * DD Cards */
Typel3Cr =0 * EXEC cards */
TypeldCr =0 * JES (output, message) cards*/
Typels5Cir =0 * Oher JCL cards: first card*/
Type2Cr =0 * JCL continuations */
Type3CQtr =0 * Comment card counter */
TypedlCir =0 * Data card counter */
Typed2Cr =0 * end of Data card counter */
Type5Cr =0 * end of job card */
TypeUQtr =0 * Unknown */
OoRecCtr =0 * Qut put Records */
DSNFound = 0 * DSN Found */
Di spFound = 0 * Di sp Found */
/* ____________ */
ReadRec:
/* ____________ */
"EXECIO 1 Di skR Infile" /* Add the I/P rec to the stack */
If RC <> 0 then do
| PECF = "YES"
"EXECIO O DiskR Infile (Finis" [/* Cose the input file */
end
El se RecCount = RecCount + 1 /* Count the records */
Return ""
/* ____________ */
I denti f yRecord:
/* ____________ */
Part1 = Substr(record, 1, 2)
Part2 = Substr(record, 3,1)
Part3 = Substr(record, 3, 71)
Spaces2 = Substr (Spaces, 3, 71)
If Substr(Record,1,3) = "//*" then Call Proc_Type3
Else If Partl ="'//'" & Part2 /=" " then Call Proc_Typel
Else if Substr(Record,1,3) ="// " then Call Proc_Type2
El se If Substr(Record,1,3) = "/* " then Call Proc_Type42
Else If Partl ="'//' & Part3 = Spaces?2 then
Call Proc_Type5
Else if Substr(Record,1,1) /= "/" then Call Proc_Type4l
Else if Substr(Record,1,9) = "/*MESSAGE" then ,
TypeldCir = TypeldCr + 1
Else if Substr(Record,1,3) = "/*$" then ,
TypeldCir = TypeldCr + 1
Else if Substr(Record,1,7) = "/*ROUTE" then ,
TypeldCir = TypeldCr + 1
El se if Substr(Record,1,8) = "/*NOTlI FY" then ,

Page [205]

TypeldCir = TypeldCr + 1

El se Call Proc_Type_Unk

Return
Proc_Typel: /* - First JCL cards read
RecType = "1 "
TypelCr = TypelCr + 1
FirstBlk = Pos(' ', Record)

TenmpRecord = Del str(Record, 1, Fi rst Bl k)
TenmpRecord = Strip(TenpRecord, L)

FirstBlk = Pos(' ', TenpRecord)

JCLType = SubStr(TenpRecord, 1, FirstBl k-1)
If JCLType = "JOB" t hen do

RecType = "11 "
TypellCr = TypellCr + 1

FirstBlk = Pos(' ', Record)
JobNanme = SubStr(Record, 3, Fi rstBl k-1)
end
else If JCLType = "DD' t hen do
RecType = "12 "
Typel2Cr = Typel2Cr + 1
FirstBlk = Pos(' ', Record)
DDName = SubStr(Record, 3, FirstBl k-1)
Call FindDSN; Call FindD sp
end

else If JCLType = "EXEC t hen do

end

RecType = "13 "

Typel3Cr = Typel3Cr + 1

FirstBlk = Pos(' ', Record)

StepNanme = SubStr(Record, 3, FirstBl k-1)

el se If JCLType = "QUTPUT" then do

RecType = "14 "
TypeldCir = TypeldCr + 1

end
el se do
RecType = "15 "
Typel5Cr = Typel5Cr + 1
end
Return
Proc_Type2: /*- JCL continuation cards read

RecType = "2

Type2Cr = Type2Cr + 1

Call FindDSN; Call FindD sp
Return
Proc_Type3: /*- Comment cards read

RecType = "3

Type3Cr = Type3Cr + 1

Ret urn

Proc_Type4l: /*- Data cards read
RecType = "41 "
Typed4lCr = TypedlCr + 1

Ret urn

Proc_Type42: /*- End of Data cards read
RecType = "42 "
Typed42Cr = Typed2Cr + 1

Page [206]

*/

*/

*/

*/

Ret urn

Proc_Type5: /*- end of job cards read

RecType = "5

Type5Cr = Type5Cr + 1

Ret urn

Proc_Type_Unk: /* Unknown type

RecType = "?

TypeUCtr = TypeUCir + 1

Say

Say

Say
Ret urn
/* Find
Fi ndDSN:

"Unknown; nunber " RecCount " was read; Type

record follows:"
Record

*/

*/

RecType,

t he dat aset name */

DSNLoc = | ndex(Record, " DSN=")
If DSNLOC > 0 then do
TenmpRec = Del str(Record, 1, DSNLOC+3) /* Del ete past dsn= */

end
Ret urn

/* Find

FirstBlk = Pos(' ', TenpRec)
FirstCom = Pos(',"', TenpRec)

If FirstCom= 0 then FirstCom = 80
If FirstBlk < FirstComthen EndPos
El se EndPos

If EndPos = 0 then do

Say "FindDSN error: " Record
end
DSN = SubStr (TenpRec, 1, EndPos- 1)
DSN = substr (DSN| | Spaces, 1, 54)
DSNFound = DSNrFound + 1
OPRecPendi ng = " YES"

t he dataset disposition */

Fi ndDi sp:
Di spLoc = I ndex(Record, " DI SP=")
If DispLOC > 0 then do

TenpRec = Del str(Record, 1, Di spLOC+4) /* Del ete

FirstBlk = Pos(' ', TenpRec)
EndPos = FirstBl k

Di sp = SubStr(TenmpRec, 1, EndPos- 1)
Di spFound = Di spFound + 1
OPRecPendi ng = " YES"

/* In case no commma */

If substr(Disp,1,2) ="(," then Disp = "NEW

el se If substr(Disp,1,5)

else If substr(Disp,1,4) = "(O.D
else If substr(Disp,1,4) = "(MD"
el se If substr(Disp,1,4) = "(NEW
end

Ret urn

/* ____________ */

/* Process the Record */

/* ____________ */

Pr ocessRecor d:
I f OPRecPending = "YES" then do

If Substr(RecType,1,1) /="'2" then do

Page [207]

"SHARE" then disp

t hen di sp
t hen di sp
t hen di sp

FirstBl k
Fi rst Com

past Di sp= */

" SHR!
" OLD"

" NEW

Jobnanme= substr (Jobnane| | Spaces, 1, 8)

St epnane= substr (St epnane| | Spaces, 1, 8)
DDName = substr (DDNane| | Spaces, 1, 8)

OPRec = Jobnane| | St epNane| | DDNane| | DSN| | Di sp
OpRecPendi ng = " NO'

OoRecCir = OpRecCir + 1

Push OpRec

"EXECIO' 1 "DiskWCQutFile"

end
end
Return
/* ____________ */
/* End-of-job Processing */
/* ____________ */
Pr ocEQJ:
"Del Stack"
"Free DDNAME(InFile)"
"EXECIO' 0 "DiskWQutFile (Finis" /* Close the file */

Queue "*** End of Job Totals for " |PDSN "***"
Queue RecCount "records read"

Queue " "TypelCir "First JCL cards read"

Queue " "TypellCr "- Job cards”

Queue " "Typel2Cr "- DD cards”

Queue " "Typel3Cr "- EXEC cards”

Queue " "Typeld4Ctr "- JES (OUTPUT, MESSACE) cards”

If Typel5Ctr > 0 then Queue " "Typel5Cr "- other JCL cards”
Queue " "Type2Ctr "JCL continuation cards read"

Queue " "Type3Ctr "Comment cards read"

Queue " "Typed4lCir "Data cards read"

Queue " "Typed2Ctr "End of Data cards read"

Queue " "Type5Ctr "end of job cards read"

If TypeUCtr > 0 then Queue " "TypeUCt r "Unknown cards read"

If TypeUCQr > 0 then Say,
"Warning: " TypeUCtr "Unknown cards read"
Queue pRecCtr "records witten”
OPDSN = FX. LOGFI LE
"Free FI(LogFile)"
"Al'l oc DD(LogFile) DA("OPDSN') MDD space(15 1) tracks ",
"Lrecl (73) Bl ock(6205) Recfm(F B)"
If RC <> 0 then do
Say "l could not allocate "OPDSN'. Sorry."
Exi t
end
Quantity = queued()
"EXECIO " Quantity " DiskWLogFile (Finis"

Ret urn

Page [208]

HD - Hex Dump

This command will hex dump a sequentia file.
[* REXX PROGRAM */
/* HD - HEX DUMP A SEQUENTI AL FILE I N HEX */
/* WRI TTEN BY DAVE GRUND */
ARG | PDsn NUMRECS OPDsn
/* CHECK COVMAND LI NE ARGUMENTS */
IF IPDsn = '' THEN DO

SAY ' COWAND TYPE:
SYNTAX: HD | PDsn NUMRECS OPDSN

EXIT
END
/* Sonme users have turned off their Profile Prefix. */

/* |If that is the case with this user,
/* his userid

I f SYSVAR(SYSPREF) = "" then

DSNPref = USERID()||"."
El se

DSNPref = ""
|F OPDsn = "' THEN DO

OPDsn = DSNPREF || "HD. QUTLI ST"
END
I F NUMRECS = '' THEN

NUMRECS = 999999

/* SET QUR CONSTANTS */
DFL = 100
LI NE */
TESTING = N
EXECUTED */
SCALEl1 ="' 1 2 3
scalel = scalel || 7 8
SCALE2 = COPIES('....5....0',10)

SAY ' WORKI NG . .

DUMW = LI STDSI (| PDsn)
| NFLRECL = SYSLRECL
| F | NFLRECL > DFL THEN DO
RECSEGS = TRUNC(| NFLRECL/ DFL, 0) /*
| F | NFLRECL/ DFL > TRUNC(| NFLRECL/ DFL
RECSEGS = RECSEGS + 1

RECSEG. = DFL /*
RECSEGLAST = | NFLRECL // RECSEGL /*
END
ELSE DO
RECSEGS = 1 /*
RECSEG. = | NFLRECL /*
RECSEG_AST = | NFLRECL /*
END

Page [209]

*/

then prefix the OP DSN with */

/* FRAGMVENT LENGTH OF ONE

/* TEST CODE WLL BE

4 5
9 10

NO OF RECORD SEGMENTS
,0) THEN

SEGVENT LENGTH
LAST SEGVENT LENGTH */

NO. OF RECORD SEGMVENTS
SEGVENT LENGTH
SEGVENT LENGTH

*/

*/

*/

*/

SAY '*** HD - HEXDUWP, VERS 1.0 ***'
SAY 'IPDsn: ' IPDsn '; LRECL ="' | NFLRECL
SAY ' OPDsn: ' OPDsn
I F TESTING = Y THEN DO
SAY ' NO. OF SEGQVENTS TO DI SPLAY FOR EACH RECORD: ' RECSEGS

SAY ' SEGVENT LENGTH: ' RECSEG-
SAY ' LAST SEGVENT LENGTH ' RECSEGQ.AST
END

" ALLOCATE DDNAME(| NFILE) DSN(" IPDsn ") SHR "
"DELETE " OPDsn
" ALLOCATE DDNAVME(OUTFI LE) DSN(" OPDsn ") NEW SPACE(20, 20)"
"BLOCK(6171) UNI T(SYSDA) LRECL(121) RECFMF B)"
" NEWSTACK"
"EXECI O * DI SKR I NFILE (STEM INFILE. FIN S"
SAY ' INPUT FILE SIZE:' |NFILE. 0 ' RECORDS.'
QUEUE ' DUWP OF DSN:' | PDsn
| F NUMRECS > | NFI LE. 0 THEN
NUVRECS = | NFI LE. 0
SAY ' DUMPI NG ' NUVRECS ' RECORDS'
DO 1 = 1 TO NUVRECS
| STR = FORMAT(1, 3, 0)
DO J = 1 TO RECSEGS
SSTR = FORMAT(J, 1, 0)
= ((J-1)*DFL) +1
= RC// 100
J = RECSEGS THEN
THI SRSL = RECSEGLAST
ELSE
THI SRSL = RECSEGL
QUEUE ' SUBSTR(SCALEL, SC, THI SRSL)
QUEUE ' SUBSTR(SCALE2, SC, THI SRSL)
THI SPORTI ON = SUBSTR(| NFI LE. I, RC, TH SRSL)
QUEUE | STR .' SSTR ' CHAR THI SPORTI ON

/* WORK ON THE ZONE PORTI ON */

WORKPORTI ON = C2X(THI SPCRTI ON)

THI SPORTI ONZONE = ' '

DO K =1 TO (TH SRSL*2) BY 2
THI SPORTI ONZONE = THI SPORTI ONZONE SUBSTR(WORKPORTI ON, K;)
THI SPORTI ONZONE = SPACE(THI SPORTI ONZONE, 0)

END

QUEUE | STR .' SSTR ZONE' TH SPORTI ONZONE

/* WORK ON THE NUMERI C PORTI ON */
WORKPORTI ON = C2X(THI SPORTI ON)
THI SPORTI ONNUMR = '
DO K = 2 TO (TH SRSL*2) BY 2
THI SPORTI ONNUMR = THI SPORTI ONNUMR SUBSTR(WORKPORTI ON, K,)
THI SPORTI ONNUMR = SPACE(THI SPORTI ONNUMR, 0)
END
QUEUE | STR .' SSTR NUMR THI SPORTI ONNUMR
END
QUEUE '
HOW MANY = QUEUEDY)
"EXECI O' HOW MANY " DI SKW OUTFI LE"
END
"EXECI O' 0 "DI SKW OUTFILE (FINI S" /* CLOSE THE FILE */
" FREE DDNAVE(| NFI LE OUTFI LE) "
SAY ' DUMP COVPLETE. CHECK ' OPDsn

Page [210]

"| SPEXEC BROWSE DATASET(" OPDsn

Page [211]

INIT - Establish my TSO environment

| use this Rexx exec to establish my TSO environment: allocate my Rexx libraries,
tellme what the temperature is, etc.

/* Init - TSO Session Initialization - REXX EXEC */

Address TSO

"Free Fi (SYSEXEQ)"

"Alloc Fi (SYSEXEC) DA(' GRUND. TSTREXX. EXEC ' GRUND. REXX. EXEC) SHR "

Say; Say; Say /* Start at the top of the screen */
Say "Hello, and wel cone to TSO, courtesy of Dave Gund's INIT EXEC. "

Say "Today is" Date(W Date(U) "; julian is " substr(Date(J), 3, 3)

MoNum = substr(Date(U), 1, 2)

If Monum= 1 then Do; Low = 0; Hi gh = 55; end
If Monum= 2 then Do; Low = 0; Hi gh = 60; end
I[f Monum= 3 then Do; Low = 15; High = 65; end
I[f Monum= 4 then Do; Low = 35; High = 80; end
If Monum= 5 then Do; Low = 45; High = 85; end
If Monum= 6 then Do; Low = 50; Hi gh = 90; end
If Monum= 7 then Do; Low = 55; High = 95; end
I[f Monum= 8 then Do; Low = 55; High = 95; end
I f Monum= 9 then Do; Low = 50; Hi gh = 90; end
I f Monum = 10 then Do; Low = 30; Hi gh = 85; end
I f Monum = 11 then Do; Low = 10; High = 75; end
I f Monum = 12 then Do; Low = O0; High = 60; end
Tenmp = Random(Low, Hi gh)

Say "The tenperature right nowis " Tenp
TSOVBG = "1 executed your INIT exec on " || Date(W Date(U "at" Tinme(QC
TSOVBG = TSOMBG || ", Dave"

"Send '"TSOVSG || "' U(GRUND) LOGON NoWit"

| ni t SPF

Page [212]

INITSPF - Establish my | SPF environment

| use this command to establish my | SPF environment, which is mainly to allocate

my test ISPF librariesin front of the production ones.
/* InitSPF - REXX EXEC */
/* Initialize personal |SPF environment */

User| D = SYSVAR(SYSU D)
Say "lnitializing personal |SPF environment..."
Addr ess TSO
/* Allocate panel libraries */
"Free Fi(lISPPLIB)"
"Alloc Fi (ISPPLIB) DA(' GRUND. | SPF. PANELS " ,
" '"ISR I BM | SRPLI B' "
" "I SP.1BM | SPPLI B' U
" "I SR PRODUCT. | SRPLIB) SHR "

/* Allocate nmessage libraries */
"Free Fi(lISPM.IB)"
"Alloc Fi (ISPMIB) DA(' GRUND. | SPF. MESSAGES' ",
" "I SR UP. | SRM.I B' "
" '"ISR I BM | SRM.I B' "
" "I SP.1BM | SPM.I B' U
" "I SR PRODUCT. | SRMLIB) SHR "

/* Allocate input table libraries */
"Free Fi(ISPTLIB)"
“"All oc Fi (ISPTLIB) DA(' GRUND. | SPF. TABLES' " ,
" "I SR I BM | SRTLI B' "
" "I SP.1BM | SPTLI B') SHR "

/* Allocate output table libraries */
"Free Fi(ISPTABL)"
"Al'l oc Fi (I SPTABL) DA(' GRUND. | SPF. TABLES') SHR'

/* Allocate skeleton libraries */
"Free Fi(l1SPSLIB)"
"Al'loc Fi(1SPSLIB) DA('GRUND. | SPF. SKELETON "
" "ISR IBM | SRSLI B ",
" "ISP.I1BM | SPSLI B' ",
" "I SR PRODUCT. I SRSLIB) SHR "
Say "...Done"

Page [213]

JOBCARD - Createajobcard

| use this exec to add a standard job card to my JCL

/* JOBCARD - | SPF Edit Macro (REXX EXEC) */

ADDRESS "I SREDI T" " MACRO PROCESS'

address "| SREDI T* " (XDSN) =DATASET"

address "I SREDI T" " (XMEM) =MEMBER"

JO1 = "//"sysvar(sysuid)"A JOB (accounting info), @GAVE GRUND@ "

Joz21 = "// MBGLEVEL=1, MSGCLASS=C, CLASS=C, PASSWORD=, TI ME=1,
Jo22 = "// USER=" || Sysvar(sysuid) || ", NOTIFY=" ||
Sysvar (Sysui d)

JO3L = " F e "

JO032 = Mo *

JO3 = J031 || J032

J04 = "//* CREATED BY JOBCARD MACRO' date(U) tine()
Jo5 = "//* TH'S JOB SUBM TTED FROM &XDSN(&XMEM "

Jo6 = "//* ** JOB STEPS **"

JO7 = "//* STEP010 - |EHGODOO - DO ANYTH NG YOU W SH'
Jog = "//* "

Jog = "// JCLLI B ORDER=(GRUND. | NCLUDE. JCL) "

J10 = "// STEP010 EXEC PGVEI EHGODOO, REG ON=640K"
address "I SREDI T* "LINE_AFTER OO = " "'"JO1"'"

address "I SREDI T* "LINE_AFTER O1 =" "'"J021"'"
address "I SREDI T* "LINE_AFTER 02 =" "'"J022"'"
address "I SREDI T* "LINE_AFTER 03 =" "'"J03"'"

address "I SREDI T* "LINE_AFTER 04 =" "'"J04"'"

address "I SREDI T* "LINE_AFTER O5 =" "'"JO5"'"

address "I SREDI T* "LINE_AFTER 06 =" "'"J0O3"'"

address "I SREDI T* "LINE_AFTER O7 =" "'"J06"'"

address "I SREDI T* "LINE_AFTER 08 =" "'"JO7"'"

address "I SREDI T* "LINE_AFTER 09 =" "'"J0O3"'"

address "I SREDI T* "LINE_AFTER 10 =" "'"J0O9"'"

address "I SREDI T* "LINE_AFTER 11 =" "'"J08"'"

address "I SREDI T* "LINE_AFTER 12 =" "'"J03"'"

address "I SREDI T* "LINE_AFTER 13 =" "'"JO7"'"

address "I SREDI T* "LINE_AFTER 14 =" "'"J03"'"

address "I SREDI T* "LINE_AFTER 15 =" "'"J10"'"

/* NOWPUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */

ADDRESS "| SREDI T "LABEL 4 = .LSTART "

ADDRESS "I SREDI T* "LABEL 8 = .LEND "

ADDRESS "I SREDI T" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"
ADDRESS " | SREDI T" " RESET"

/* 1 can't get apostrophes around the name to begin with */
/* because of syntax restrictions. So do it now. */
ADDRESS "I SREDI T" "LABEL 1 = .LONLY "

ADDRESS "I SREDI T" "CHANGE '@ ''' .LONLY .LONLY ALL"
ADDRESS "I SREDI T" "Cursor = 1 0"

address "I SREDI T* "LINE_AFTER O = Not eLi ne",

"'"Jobcard generat ed.

addr ess

"I SREDI T"

"LI NE_AFTER 15 Not eLi ne",

Page [214]

JUMBLE - Display All Combinations of L etters

/* Junble - Print conbinations of letters - Rexx Exec */
/* This is a Rexx |learning exercise that has a practical val ue: */
/* to hel p you solve sone of those nasty newspaper junble puzzles. */

/* There is a lot of roomfor code to renove nore conbi nati ons */
/* of letters that cannot appear in words in the English | anguage. */

/* This exec hel ps to denonstrate the blazing speed of a mainfranme */

/* conputer, so don't hesitate to add whatever code is necessary! */
ARG Letters
Call ProcO1 /* Initialization */
/* Call Procl0 */ /* Create nunber conbos */
Call ProclO0A /* Use precal ced conbos */
Call Proc20 /* Create |letter conbos */
Call Proc30 /* Del ete inpossible words */
Call Proc40 /* Sort the word array */
Call Proc50 /* List the word array */
Exi t
/* ___________ */
/* ProcOl: Initialization */
/* ___________ */
ProcO1:

If Letters = "" then do

Say "Please supply the letters:™
Pull Letters

If Letters = "" then exit
End
Say; Say; Say
Say "The letters you gave me to work with are:" Letters
/* The nunber of conbinations of letters is the |length of */
/* the word - factorial. */

WordLen = |l ength(Letters)

If WordLen < 4 then do
Say "Very funny. You need help froma conputer for "Letters"?"
Exi t

End

If WordLen > 6 then do
Say "I amnot programmed to handl e nore than 6-character words"
Say "Sorry!"
Exi t

End

Lastwrd = ""

Return

/* Create nunber conbinations */

/* This routine will create an array of nunber conbi nations that
will be used to create an array of letter conbinations |ater. */
/* This is where the program spends nost of its tine. */
/* For a six-letter word, 8+ mnutes. */
Proc10:
If WordLen = 6 then do
Say "Staring to create nunber conbi nations. Patience please..."

Page [215]

STi
End
Conbo

me = Tine(E

Count

/* Start tine

= 0; WrdArrayEnts = 0

MaxNum = ri ght (' 654322' , Wr dLen)

Start

Do |

/* First see if any of the digits is > the no.
1 to WordLen
/[* Say "In "1",

Do

Num =

left('123456' , Wr dLen)

= StartNumto MaxNum
Accept Thi sConbo = 'Y

J =

If Substr(Il,J,1)
If Substr(l,J,1) > WrdLen then Iterate |

End

—h —h —h —h —h —h

| f

End

Substr(1,1,1)
Substr(1,1,1)
Substr(1,1,1)
Substr (1, 2,1)
Substr (1, 2,1)
Substr (1, 3,1)

am | ooki ng at:"Substr(I,J,1)
t hen Accept Thi sConbo = ' N

='0

substr(l,2,1)
substr (I, 3, 1)
substr (1,4, 1)
substr (I, 3, 1)
substr (I, 4, 1)
substr (I, 4, 1)

t hen
t hen
t hen
t hen
t hen
t hen

*/

*/

Accept Thi sConbo
Accept Thi sConbo
Accept Thi sConbo
Accept Thi sConbo
Accept Thi sConbo
Accept Thi sConbo

WordLen > 4 then do
If Substr(Il,1,1)
If Substr(l,2,1)
If Substr(l,3,1)
If Substr(l,4,1)

substr(l,5, 1)
substr(l,5, 1)
substr(l,5, 1)
substr(l,5, 1)

If WordLen > 5 then do
If Substr(Il,1,1)
If Substr(l,2,1)
If Substr(I,3,1)
If Substr(l,4,1)
If Substr(Il,5,1)

End

/*

End
End
ConboArray. 0 = ConboCount
ETime = Tine(E) /* End Time */
Duration = ETinme - STine
Say "That part took" Duration "seconds!™"
Return
/* ___________ */
/* Use Pre-cal cul ated comi nati ons,
/* ___________ */
/* This is a hard-coded version of the array that
above.
Pr oc10A:
If WordLen = 6 then STine = Tinme(E) /*

ConboArray. 1=123456

Finally,

/* Say ComboCount

see if we have not
I f Accept ThisConbo = 'Y
ConmboCount =

substr (I, 6, 1)
substr (I, 6, 1)
substr (I, 6, 1)
substr (I, 6, 1)
substr (I, 6, 1)

t hen do

ConboCount + 1

*/

ConboArray. ComboCount = |

t hen
t hen
t hen
t hen

t hen
t hen
t hen
t hen
t hen

Page [216]

sConbo
sConbo
sConbo
sConbo

Accept Thi
Accept Thi
Accept Thi
Accept Thi

sConbo
sConbo
sConbo
sConbo
sConbo

Accept Thi
Accept Thi
Accept Thi
Accept Thi
Accept Thi

renoved this conmbo */

Start time */

ZzZzzzZz

of chars */

ZzZzZz

ZzZzzZz

to save the programa lot of tinme */

is created in ProclO

*/

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

2=123465

3=123546

4=123564

5=123645

6=123654

7=124356

8=124365

9=124536

10=124563
11=124635
12=124653
13=125346
14=125364
15=125436
16=125463
17=125634
18=125643
19=126345
20=126354
21=126435
22=126453
23=126534
24=126543
25=132456
26=132465
27=132546
28=132564
29=132645
30=132654
31=134256
32=134265
33=134526
34=134562
35=134625
36=134652
37=135246
38=135264
39=135426
40=135462
41=135624
42=135642
43=136245
44=136254
45=136425
46=136452
47=136524
48=136542
49=142356
50=142365
51=142536
52=142563
53=142635
54=142653
55=143256
56=143265
57=143526
58=143562
59=143625
60=143652
61=145236

Page [217]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

62=145263
63=145326
64=145362
65=145623
66=145632
67=146235
68=146253
69=146325
70=146352
71=146523
72=146532
73=152346
74=152364
75=152436
76=152463
77=152634
78=152643
79=153246
80=153264
81=153426
82=153462
83=153624
84=153642
85=154236
86=154263
87=154326
88=154362
89=154623
90=154632
91=156234
92=156243
93=156324
94=156342
95=156423
96=156432
97=162345
98=162354
99=162435
100=162453
101=162534
102=162543
103=163245
104=163254
105=163425
106=163452
107=163524
108=163542
109=164235
110=164253
111=164325
112=164352
113=164523
114=164532
115=165234
116=165243
117=165324
118=165342
119=165423
120=165432
121=213456

Page [218]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

122=213465
123=213546
124=213564
125=213645
126=213654
127=214356
128=214365
129=214536
130=214563
131=214635
132=214653
133=215346
134=215364
135=215436
136=215463
137=215634
138=215643
139=216345
140=216354
141=216435
142=216453
143=216534
144=216543
145=231456
146=231465
147=231546
148=231564
149=231645
150=231654
151=234156
152=234165
153=234516
154=234561
155=234615
156=234651
157=235146
158=235164
159=235416
160=235461
161=235614
162=235641
163=236145
164=236154
165=236415
166=236451
167=236514
168=236541
169=241356
170=241365
171=241536
172=241563
173=241635
174=241653
175=243156
176=243165
177=243516
178=243561
179=243615
180=243651
181=245136

Page [219]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

182=245163
183=245316
184=245361
185=245613
186=245631
187=246135
188=246153
189=246315
190=246351
191=246513
192=246531
193=251346
194=251364
195=251436
196=251463
197=251634
198=251643
199=253146
200=253164
201=253416
202=253461
203=253614
204=253641
205=254136
206=254163
207=254316
208=254361
209=254613
210=254631
211=256134
212=256143
213=256314
214=256341
215=256413
216=256431
217=261345
218=261354
219=261435
220=261453
221=261534
222=261543
223=263145
224=263154
225=263415
226=263451
227=263514
228=263541
229=264135
230=264153
231=264315
232=264351
233=264513
234=264531
235=265134
236=265143
237=265314
238=265341
239=265413
240=265431
241=312456

Page [220]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

242=312465
243=312546
244=312564
245=312645
246=312654
247=314256
248=314265
249=314526
250=314562
251=314625
252=314652
253=315246
254=315264
255=315426
256=315462
257=315624
258=315642
259=316245
260=316254
261=316425
262=316452
263=316524
264=316542
265=321456
266=321465
267=321546
268=321564
269=321645
270=321654
271=324156
272=324165
273=324516
274=324561
275=324615
276=324651
277=325146
278=325164
279=325416
280=325461
281=325614
282=325641
283=326145
284=326154
285=326415
286=326451
287=326514
288=326541
289=341256
290=341265
291=341526
292=341562
293=341625
294=341652
295=342156
296=342165
297=342516
298=342561
299=342615
300=342651
301=345126

Page [221]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

302=345162
303=345216
304=345261
305=345612
306=345621
307=346125
308=346152
309=346215
310=346251
311=346512
312=346521
313=351246
314=351264
315=351426
316=351462
317=351624
318=351642
319=352146
320=352164
321=352416
322=352461
323=352614
324=352641
325=354126
326=354162
327=354216
328=354261
329=354612
330=354621
331=356124
332=356142
333=356214
334=356241
335=356412
336=356421
337=361245
338=361254
339=361425
340=361452
341=361524
342=361542
343=362145
344=362154
345=362415
346=362451
347=362514
348=362541
349=364125
350=364152
351=364215
352=364251
353=364512
354=364521
355=365124
356=365142
357=365214
358=365241
359=365412
360=365421
361=412356

Page [222]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

362=412365
363=412536
364=412563
365=412635
366=412653
367=413256
368=413265
369=413526
370=413562
371=413625
372=413652
373=415236
374=415263
375=415326
376=415362
377=415623
378=415632
379=416235
380=416253
381=416325
382=416352
383=416523
384=416532
385=421356
386=421365
387=421536
388=421563
389=421635
390=421653
391=423156
392=423165
393=423516
394=423561
395=423615
396=423651
397=425136
398=425163
399=425316
400=425361
401=425613
402=425631
403=426135
404=426153
405=426315
406=426351
407=426513
408=426531
409=431256
410=431265
411=431526
412=431562
413=431625
414=431652
415=432156
416=432165
417=432516
418=432561
419=432615
420=432651
421=435126

Page [223]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

422=435162
423=435216
424=435261
425=435612
426=435621
427=436125
428=436152
429=436215
430=436251
431=436512
432=436521
433=451236
434=451263
435=451326
436=451362
437=451623
438=451632
439=452136
440=452163
441=452316
442=452361
443=452613
444=452631
445=453126
446=453162
447=453216
448=453261
449=453612
450=453621
451=456123
452=456132
453=456213
454=456231
455=456312
456=456321
457=461235
458=461253
459=461325
460=461352
461=461523
462=461532
463=462135
464=462153
465=462315
466=462351
467=462513
468=462531
469=463125
470=463152
471=463215
472=463251
473=463512
474=463521
475=465123
476=465132
477=465213
478=465231
479=465312
480=465321
481=512346

Page [224]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

482=512364
483=512436
484=512463
485=512634
486=512643
487=513246
488=513264
489=513426
490=513462
491=513624
492=513642
493=514236
494=514263
495=514326
496=514362
497=514623
498=514632
499=516234
500=516243
501=516324
502=516342
503=516423
504=516432
505=521346
506=521364
507=521436
508=521463
509=521634
510=521643
511=523146
512=523164
513=523416
514=523461
515=523614
516=523641
517=524136
518=524163
519=524316
520=524361
521=524613
522=524631
523=526134
524=526143
525=526314
526=526341
527=526413
528=526431
529=531246
530=531264
531=531426
532=531462
533=531624
534=531642
535=532146
536=532164
537=532416
538=532461
539=532614
540=532641
541=534126

Page [225]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

542=534162
543=534216
544=534261
545=534612
546=534621
547=536124
548=536142
549=536214
550=536241
551=536412
552=536421
553=541236
554=541263
555=541326
556=541362
557=541623
558=541632
559=542136
560=542163
561=542316
562=542361
563=542613
564=542631
565=543126
566=543162
567=543216
568=543261
569=543612
570=543621
571=546123
572=546132
573=546213
574=546231
575=546312
576=546321
577=561234
578=561243
579=561324
580=561342
581=561423
582=561432
583=562134
584=562143
585=562314
586=562341
587=562413
588=562431
589=563124
590=563142
591=563214
592=563241
593=563412
594=563421
595=564123
596=564132
597=564213
598=564231
599=564312
600=564321
601=612345

Page [226]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

602=612354
603=612435
604=612453
605=612534
606=612543
607=613245
608=613254
609=613425
610=613452
611=613524
612=613542
613=614235
614=614253
615=614325
616=614352
617=614523
618=614532
619=615234
620=615243
621=615324
622=615342
623=615423
624=615432
625=621345
626=621354
627=621435
628=621453
629=621534
630=621543
631=623145
632=623154
633=623415
634=623451
635=623514
636=623541
637=624135
638=624153
639=624315
640=624351
641=624513
642=624531
643=625134
644=625143
645=625314
646=625341
647=625413
648=625431
649=631245
650=631254
651=631425
652=631452
653=631524
654=631542
655=632145
656=632154
657=632415
658=632451
659=632514
660=632541
661=634125

Page [227]

ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.
ConboArr ay.

662=634152
663=634215
664=634251
665=634512
666=634521
667=635124
668=635142
669=635214
670=635241
671=635412
672=635421
673=641235
674=641253
675=641325
676=641352
677=641523
678=641532
679=642135
680=642153
681=642315
682=642351
683=642513
684=642531
685=643125
686=643152
687=643215
688=643251
689=643512
690=643521
691=645123
692=645132
693=645213
694=645231
695=645312
696=645321
697=651234
698=651243
699=651324
700=651342
701=651423
702=651432
703=652134
704=652143
705=652314
706=652341
707=652413
708=652431
709=653124
710=653142
711=653214
712=653241
713=653412
714=653421
715=654123
716=654132
717=654213
718=654231
719=654312
720=654321
0 =720

Page [228]

ETime = Tine(E) /* End Time */

Duration = ETinme - STine

Say "That part took" Duration "seconds!"
Return

/* Create |l etter conbinations */

Proc?20:

Lastwrd = ""

Wor dArrayEnts = 0

Dol =1 to ConboArray. O
| ndex1 subst r (ConboArr ay.
I ndex?2 subst r (ConboArr ay.
I ndex3 subst r (ConboArr ay.
| ndex4 subst r (ConboArr ay.
If WordLen > 4 then | ndex5
If WordLen > 5 then | ndex6

1)
1)
1)
1)
b
b

wunhrwWNE

cC Cc-

str(ConboArray. 1,5, 1)
str(ConboArray. |1, 6, 1)

TW = substr(Letters, I ndex1,1) || ,
substr(Letters, | ndex2,1) || ,
substr(Letters, | ndex3,1) ||
substr(Letters, | ndex4, 1)

If WordLen > 4 then TW= TW | substr(Letters, | ndex5, 1)
If WordLen > 5 then TW= TW | substr(Letters, | ndex6, 1)

Wor dArrayEnts = WrdArrayEnts + 1
Wor dArray. WrdArrayEnts = TW

End

WordArray. 0 = WrdArrayEnts

Say "l generated "WrdArrayEnts WrdLen"- letter conbinations.™

Return
%o * [
/* Delete Inpossible Wrds fromthe Array */
%o * [
Proc30:
Call Proc302 /* Build the NMBStr: 3-chr, anywhere

d

Call Proc303 * d the NS2Str: 2-chr, start
Call Proc304 /* Build the NE2Str: 2-chr, end
Call Proc305 * ild the NS3Str: 3-chr, start
Call Proc306 * d the NE3Str: 3-chr, end
NewMor dArrayEnts = 0
Dol =1 to WrdArrayEnts

Thi sWword = WordArray. |

If LastWord = Thiswird then Iterate /* Bypass duplicates */

LastWrd = Thi sWwrd

/* Delete words that contain the 3-letter conbi nati ons that

appear in the above NM3Str array
Isln = fal se
/* Say "NMBStr="NMBStr */
Do Z=1to length(Thiswrd) - 2
Thi sCheck = substr(Thi sWrd, Z, 3)
I f Pos(Thi sCheck, NMBStr) > 0 then Isln = true
If Isln = true then Leave
End
If Isln = true then iterate

Page [229]

*/

*/
*/
*/

/* Delete words that start with letters that appear in the

above array
Pos(l ef t (Thi sWrd, 2),NS2Str) > 0 then lterate
Pos(l eft (ThisWwrd, 3),NS3Str) > 0 then Iterate

—h —h

/* Delete words that end with letters that appear in the
above (NE2Str) array

Pos(right (Thi sWword, 2), NE2Str) > O then Iterate
Pos(right (Thi swrd, 3), NESStr) > 0 then Iterate

—h —h

/* M scel | aneous elimnations */
/* A'Q MIST be followed by a 'U */
If Pos('Q,Thiswrd) > 0 then do
Thi sSpot = Pos(' QUJ , Thi s\Wr d)
If ThisSpot = 0 then Iterate
/[* "QU' nust be followed by A, E I, or O*/
Thi sSet = subst r (Thi sWord, Thi sSpot, 3)
If (ThisSet = "QUA') | (ThisSet = "QUE') | (ThisSet =
(ThisSet = '"QUO) then nop
Else iterate
End
if Pos('UH ,ThisWwrd) > 0 then Iterate
if Pos('VD ,Thiswrd) > 0 then Iterate

/* 1If we get to this point, we have NOT elimnated the word */

NewMor dArrayEnts = Newwr dArrayEnts + 1
NewMor dAr r ay. Newor dArrayEnts = Wor dArray. |
End
NewMor dArray. 0 = Newwbr dArrayEnt s
Say "Thinking..."
Return

/* Build the NMBStr */

Proc302:
/* Build the NMBStr: three-character conbi nati ons that
a (3-6 char) word cannot contain */
NMB01 = "AAA AEC AEP AES AOD "
NM302 = "BBB BEJ BJM BLM BUJ "
NMB031= "CCC CCH CCK CHC CHN CLC CLH CLP CRC CRH "
NMB032= "CRK CRN CRS CRT CRWCWR "
NVB03 = NVBO31| | NMB032
NM304 = "DDD DLD DLN DLR DNL DNR DRL DRN "
NM3051= "EBJ EBM EEE "

NVB052= "EIA EIE EIH EIl EIJ EIK EIOEIQEIU EIV EIWEIX EI'Y EI Z"

NVBO53= "EJB EJL EJM ELJ EMJ EVH'

NVBO5 = NMVBO51| | NMBO52| | NVBO53

NVBO6 = "FFF FKA FKE FKR FRK "

NVBO71= "GGG GHB GHC GHD GHH GHG GHH GHJ GHK GHL GHM "
NVBO72= "GHN GHP GHQ GHR GHS GHT GHV GHW GHX GHY GHZ "
NVBO73= "GRV GVR "

NVBO7 = NMVBO71| | NMBO72| | NVBO73

NVBO81= "HCT HGH HEH HHH HI H HLP HLS HPS "

NvB082= "HRC HRN HRS HRT HRV HSP HSR HSS HVT "
NMB08 = NMB081| | NMB082

NVBO9 = "IIl ITV IVGIVR IVT "

Nv810 = "JBL JEB JEM JJJ JLM

NVB11 = " KKK KRC KRW KWE KWR "

Page [230]

NVB12
NVB13
NVB14
NVB15
NVB16
NVB18
NVB19
NMB20
NVB21
NVB22
NVB23
NVB24
NMB25
NMVB26

NMBSt r
NMBSt r
NMBSt r
NMBSt r
/* Say
Ret urn

Proc303:
/* Bui
a (3
NS201 =
NS2021
NS2022
NS202
NS203
NS2041
NS2042
NS204
NS205
NS206
NS207
NS2081
NS2082
NS208
NS209
NS2101
NS2102
NS210
NS2111
NS2112
NS211
NS2121
NS2122
NS212
NS2131
NS2132
NS213
NS2141
NS2142
NS214
NS215
NS216

LEJ LHS LLL LRN
M.J MW MJB MJJ
NRC NRD NRG NRL
oo

PLC PLH PLS PPP
RCS RFK RGV RHC
SCT SLH SLP SLS
TIH TPT TRC TRH
UBL UBM UCN ULB
VRT VTH VTR VW
WHC VHT WRC WRK

LM} LND LUJ "

NRU NCU'

RVG RVT RWC "
SSS STT "
TVR "

PRR PRS PSR
RHN RRP RRR
SPC SRC SRH
TRS TRV TTT
uLJ UMl UuU

WAV

72727

NVBO1| | NVBO2| | NVBO3| | NVBO4| | NVBOS| | NMVBO6| | NVBO7

NVBSt r | | NVBOS| | NVBO9| | NVB10| | NVB11| | NVB12| | NVB13

NVBSt r | | NVB14| | NVB15| | NVB16| | NMB18| | NVB19

NVBSt r | | NVB20| | NVB21| | NVB22| | NMB23| | NVB24| | NVB25| | NVB26
NVBStr */

- .

d the NS2Str: two-character conbi nations that
-6 char) word cannot start with */

"AA AE "

"BB BC BD BF BG BH BJ BK BL BM "

"BN BP BQ BS BT BY BWBX BZ "
NS2021| | NS2022
CGQ CKCMCNCPCQCsSCT cvaowex ez

"CB CC CD CF
= "DB DC DD DF DG DH DJ DK DL DM "

= "DN DP DQ DS DT DV DWDX DZ "

NS2041| | NS2042

"B E7 "

"FB FC FD FF FG FH FJ FK FM FN FP FQ FS FT FV FWFX FZ "
"GB GC GD GF GG G] &K GM GN GP GQ GS GT GV GWGX GY GZ "
= "HB HC HD HF HG HH HJ HK HL HM "

= "HN HP HQ HR HS HT HV HWHX HZ "

NS2081| | NS2082

"TETHIT 1JIKITUIWIXIY1Z"

= "JB JCJD JF JGJHJJ JKJIL IM"

= "IN JP JQJR JS JT JV JWJIX JY JZ "

NS2101| | NS2102

= "KB KC KD KF KG KH KJ KK KL KM "

= "KP KQ KS KT KV KWKX KY KZ "

NS2111| | NS2112

= "LB LC LD LF LG LH LJ LK LL LM "

= "LN LP LQ LR LS LT LV LWLX LZ "

NS2121| | NS2122

="MB MCMDM MGMH M MKCM MM

= "MN MP MQ MR M5 MI W M MX MZ "

NS2131| | NS2132

= "NB NC ND NF NG NH NI NK NL NM "

= "NN NP NQ NR NS NT NV NWNX NZ "

NS2141| | NS2142

") 0 Q@ -

"PB PC PD PF PG PJ PK PM PN PP PQ PS PT PV PWPX PZ "

Page [231]

NS218 = "RB RC RD RF RG RH R] RK RL RMRN RP RQ RR RS RT RV RWRX RZ "
NS219 = "SB SD SF SG SJ SR SS SV SX SZ "

NS220 = "TB TCTD TF TG TJ TK TL TMTN TP TQ TS TT TV TX TZ "
NS221 = "UA UC UE UH UJ UO UQ UU UWUX UY Uz "

NS2221 = "VB VC VD VF VG VH VJ VK VL VM "

NS2222 = "VN VP VQ VR VS VT W VW VX VZ "

NS222 = NS2221| | NS2222

NS223 = "VB WC WD WE W6 W WK W WM VN WP VWO WS W W/ VWV WK W2
NS2241 = "XA XB XC XD XE XF XG XH XI XJ XK XL XM "

NS2242 = "XN XO XP XQ XS XT XU XV XW XX XY XZ "

NS224 = NS2241| | NS2242

NS2251 = "YB YC YD YF YG YH Yl YJ YK YL YM"

NS2252 = "YN YP YQ YR YS YT YU YV YW YX YY YZ "

NS225 = NS2251| | NS2252

NS2261 = "ZB ZC ZD ZF ZG ZH ZJ ZK ZL ZM "

NS2262 = "ZN ZP ZQ ZR ZS ZT ZU ZV ZWZX ZY ZZ "

NS226 = NS2261| | NS2262

NS2Str = NS201| | NS202| | NS203| | NS204| | NS205| | NS206| | NS207

NS2Str = NS2Str| | NS208| | NS209]| | NS210| | NS211] | NS212| | NS213

NS2Str = NS2Str| | NS214| | NS215| | NS216| | NS218| | NS219

NS2Str = NS2Str| | NS220| | NS221| | NS222| | NS223| | NS224| | NS225| | NS226

/* Say NS2Str */
Ret urn

/* Build the NE2Str */

Proc304:
/* Build the NE2Str: two-character comnbinations that
a (3-6 char) word cannot end with */

NE201 = "AA AE AH AJ AQ AV "

NE2021 = "BB BC BD BF BG BH BJ BK BL BM "

NE2022 = "BN BP BQ BT BV BWBX BZ "

NE202 = NE2021| | NE2022

NE203 = "CB CCCDCFCGCQI CLCMCNCP CQCRCYy cwex cz
NE2041 = "DB DC DF DG DH DJ DK DL DM "

NE2042 = "DN DP DQ DR DT DU DV DW DX DZ "

NE204 = NE2041| | NE204

NE205 = "EH EJ EQ EV "

NE206 = "FB FC FD FGFH FJ FK FL fM FN FP FQ FR FT FV FWFX FZ "
NE207 ="CBCC D G A KL GMANGEFP QR GCI 6BV GVGEX &Z
NE2081 = "HB HC HD HF HG HH HJ HK HL HM "

NE2082 = "HN HP HQ HR HT HU HV HW HX HZ "

NE208 = NE2081| | NE2082

NE209 = "IEITHII 1J IKIWIY IZ"

NE2101 = "JB JC JD JF JG JH JJ JK JL JM"

NE2102 = "IN JP JQJR JS JT JUJV JWJIX JY Jz "

NE210 = NE2101| | NE2102

NE2111 = "KB KC KD KF KG KH KJ KK KL KM "
NE2112 = "KN KP KQ KR KT KU KV KW KX KY KZ "
NE211 = NE2111| | NE2112

NE2121 = "LB LC LD LF LG LH LJ LK "

NE2122 = "LN LP LQ LR LU LV LWLX LZ "

NE212 = NE2121| | NE2122

NE2131 = "MB MC MDD MF MG MH MJ K M. "
NE2132 = "MQ MR W MV MX MZ "

NE213 = NE2131| | NE2132
NE2141 “"NB NC ND NF NH NJ NL NM "
NE2142 "NP NQ NR NU NV NwW"

Page [232]

NE214
NE215
NE216
NE218
NE219
NE220
NE221
NE2221
NE2222
NE222
NE223
NE2241
NE2242
NE224 =
NE2251
NE2252
NE225
NE2261
NE2262
NE226

NE2St r
NE2St r
NE2St r
NE2St r
/* Say
Ret urn

Pr oc305:
/* Bui
a (3
NS3011=
NS3012=
NS3013=
NS3014=
NS301
NS302
NS303
NS304
NS3051
NS3052=
NS305
NS306
NS307
NS308
NS3091
NS3092
NS3093=
NS309
NS310
NS311
NS312
NS313
NS314
NS315
NS316
NS317

"OC Q) OQ OZ "

"PB PC PD PF PG PJ PK PL PM PN PP PQ PU PV PWPX PZ "
"RC R] RQ RV RWRX RZ "

"SB SD SF SG SJ SL SN SV SWSZ "

"TBTCTDTF TGTI TKTL TMTN TP TQ TV TX TZ "
"UH UJ UO UQ UU UW UX UY UZ "
= "VB VC VD VF VG VH VJ VK VL VM "
= "VN VP VQ VR VS VT VU W W VX VZ "
NE2221| | NE2222

"WB WC WD W VWG W VK W WMWK WP WD W VWV WK W
= "XA XB XC XD XF XG XH XI XJ XK XL XM "
= "XN XO XP XQ XS XT XU XV XW XX XY XZ "
NE2241| | NE2242
="YBYCYDYF YGYHY YJ YKYLYM"
= "YN YP YQ YR YT YU YV YW YX YY YZ "
NE2251| | NE2252
= "ZB ZC ZD ZF ZG ZH ZJ ZK ZL ZM'
= "ZN ZP ZQ ZR ZS ZT ZU ZV ZW ZX ZY ZZ "

NE2261| | NE2262

NE201| | NE202| | NE203| | NE204| | NE205| | NE206]| | NE207

NE2St r | | NE208| | NE209| | NE210| | NE211| | NE212| | NE213

NE2St r | | NE214| | NE215| | NE216| | NE218| | NE219

NE2St r | | NE220| | NE221| | NE222| | NE223| | NE224| | NE225| | NE226
NE2Str */

the NS3Str */

d the NS3Str: three-character conbinations that

-6 char) word cannot start with */
"ACD ACV ADC AHR AlV "
"AOA AOB ACC AOD ACE AOF ACG ACH AO AQJ ACK AL AOM "
"AON ACO ACP ACQ ACS ACT AQU AOV AOW AOX AOY AQz ™
"ASR ATR "
NS3011| | NS3012| | NS3013| | NS3014

"CHS CHT CTR "

"DIU DU "

"EBL ECD ECV EIB EICEIF EIL EEMEINEIP EIREIS EIT "
"ERH ERI ERT ERV ETI ETR ETV EUR EUT EW EVC EVR EVT EWU "
NS3051| | NS3052

"ICDICV IRH IRT IRUITRV ITRITU "

"IVA IVB IVC IVD IVE IVF IVG IVH IVI IVJ IVKIVL I[VM"
"IVN IVP IVQ IVR IVS IVT VU IW [VWIVX IVZ "
NS3091| | NS3092| | NS3093

Page [233]

NS318 "RAO REU RUO RUWV "

NS319 = "SHT SPS STC STH STP "

NS320 = "TEV THC THS TIU TI'V TUE TW "

NS321 = "RUP URR URV UVR UTV WT "

NS322 = "VEH VUF VUR VUT "

NS323 = ""

NS324 = ""

NS325 = ""

NS326 = ""

NS3Str = NS301| | NS302| | NS303| | NS304| | NS305| | NS306| | NS307
NS3Str = NS3Str| | NS308| | NS309| | NS310| | NS311| | NS312| | NS313
NS3Str = NS3Str| | NS314| | NS315| | NS316]| | NS317| | NS318| | NS319
NS3Str = NS3Str| | NS320| | NS321| | NS322| | NS323| | NS324| | NS325| | NS326

/* Say NS3Str */
Ret urn

/* Build the NE3Str */

Pr oc306:
/* Build the NE3Str: three-character conbi nati ons that
a (3-6 char) word cannot end with */
NE301 = "APR ARH ASR ASC "
NE302 = "BJE BMU "
NE3031= "CCU CVA CMP CPE CPR CPS CRM CRP CRU "

NE3032= "CSH CSP CSR CST CUC CVE "

NE303 = NE3031| | NE3032

NE304 = "DCl DDA DDI DDO DIV DLA DLO DNO DVA DVE DVI'*
NE305 = "EGN EQU EI'V EPR ESC ESR ETG ETR EUV "
NE306 = ""

NE307 = "CGEU GV GRN GRT GRU GIU GvI "

NE308 = "HCS H V HRA HSC HST HTR HVE "

NE309 = "IDD ITRITU W "

NE310 = "JwmJ

NE311 = "KCO "

NE312 = "LDA LDO LJE LNA LNO LRA LRD LRO "
NE313 = "MBE MBU MCA MPA MPR MRP'

NE314 = "NDO NLA NLO NRA NRO NRT "

NE315 = "AV QuC "

NE316 = "PVA PRM "

NE317 = ""

NE3181= "RCA RCO RCU RDO RHS RV RWP "

NE3182= "RNO RNT ROV RPR RRU RSC RSP RTU RW RVI RVO "

NE318 = NE3181| | NE3182

NE319 = "SPR SRE SRP SRT STR'

NE320 = "TCA TCR TEV TGU TIU TIV TRN TRU TSC TSR TU TW TVI TVE TW "
NE321 = "UCO UV UOP UPR UTI UTR LVI "

NE322 = "VEI VEU VIG VIR VI U VOG VOR VRG VRU VTE VTl VTU VU VUR "
NE323 = ""

NE324 = ""

NE325 = ""

NE326 = ""

NE3Str = NE301| | NE302| | NE303| | NE304| | NE305| | NE306| | NE307

NE3Str = NE3Str||NE308| | NE309| | NE310| | NE311| | NE312| | NE313

NE3Str = NE3Str||NE314| | NE315| | NE316| | NE317| | NE318| | NE319

NE3Str = NE3Str||NE320| | NE321| | NE322| | NE323| | NE324| | NE325| | NE326

/* Say NE3Str */
Ret urn

Page [234]

/* ___________ */
Pr oc40:
Do Until SortOK ="'Y
SortoK = 'Y
Dol =1 to NewwrdArrayEnts - 1
Next Ent = [+1
I f NewordArray.l > Newwbr dArray. Next Ent then do
SortoK = ' N
TempWord = NewWbr dArray. |
NewMor dArray. | = Newbr dArray. Next Ent
NewMor dAr ray. Next Ent = TenpWor d
End
End
End
Return

A . */
Pr oc50:
Wor dsCount ed =
Dol =1 to Ne

0
wWMor dAr r ayEnt s

Thi sWword = NewWbr dArray. |

I f LastWord

= ThisWrd then lIterate

Last Wrd = Thi sWwrd

Wor dsCount ed
End

Say "I will 1i
LastWrd = ""
Dol =11to Ne

= WrdsCounted + 1

st "WordsCount ed” possi bl

wWMor dAr rayEnt s

Thi sWword = NewWbr dArray. |

I f LastWord

= ThisWrd then lIterate

LastWrd = Thi sWwrd

Say Thi s\Word
End

Ret urn

Page [235]

/* Bypass duplicates */

e words:"

/* Bypass duplicates */

LA -List TSO allocations

This Rexx exec will list the TSO allocations and write them to a dataset. It will
then edit that dataset using | SPF macro LAE (included below).

/* LA - Create a List of TSO Allocations - Rexx Exec */
/* Witten by Dave G und */

Dunmmy = Qut Trap("output_line.","*")
"Ll STA SY ST"

NumlLi nes = Qut Put _Line. 0

Say Nunlines "lines were created”
Dunmy = Qut Trap(" OFF")

/* Move the line with the DDNAMVE above the first dataset name

that it is concatenated to. It is currently bel ow */
Do I =1 to NunLines
Piecel = SubStr(QutPut_Line.l,1,2)
Pi ece2 = SubStr(QutPut _Line. I, 3,1)
Pi ece3 = SubStr(QutPut_Line. I, 12, 4)
If Piecel ="' ' &,
Piece2 -=' ' &,
Pi ece3 = ' KEEP' then do
J=1-1
Saveli ne = QutPut _Line.lI
Qut put_Line.l = QutPut_Line.J
Qut put _Li ne.J = SavelLi ne
end
end

/* Many users have the TSO profile set to NoPrefix */
/* Account for that here. */
I f SYSVAR(SYSPREF) = '' then do

"profile prefix(" userid() ")"

TurnPrefixBackOFf =1
end
El se

TurnPrefi xBackOF'f = 0

"Delete la.list"
"Al'l ocate DD(LALi st) DA(LA.List) new space(1l 1) tracks",
"LRECL(80) Block(5600) recfm(f b) RETPD(O0)"

"Execl O QutPut_line.0 "D skWLALi st (STEM Qut Put _Line. FINI' S"
"Free DDNAME(LaList) DA(La.List)"

ADDRESS "1 SPEXEC' "EDI T Dat aset (La.List) Macro(LAE)"
ADDRESS " TSO'

I f TurnPrefixBackOf = 1 then
"Profile Noprefix"

LAE - ISPF Edit macrofor LA

/* LAE - Edit macro for LA - Rexx Exec */
/* Witten by Dave G und */

ADDRESS " | SREDI T* " MACRO PROCESS"

Page [236]

ADDRESS
ADDRESS
ADDRESS
ADDRESS

"I SREDI T"
"I SREDI T"
"I SREDI T"
"I SREDI T"

"EXCLUDE ALL -- DDNAME 1"
"EXCLUDE ALL '
"Delete ALL X'

"C ' KEEP'

Page [237]

keep' 1 "

word al

12"

LOTTERY - Pick Lottery Numbers

/* Lottery - Pick a Lottery Number - Rexx Exec
/* Witten by Dave G und
/* This programw |l pick a lottery nunmber for you

Arg Gane
Call Init /* Init Program
Call Main /* Mainline
Exi t
[* e * [
/* Program lnitialization */
%o * [
Init:
If Gane = "" then do

Say "Wiich ganme do you want nunbers for?"

*/
*/
*/

*/
*/

Say "The choices are: 1)Pick3 2)PowerBall 3)Show Me Five"

Pull Gane
End

If (Gamre = 1) | (Game = 2) | (Game = 3) then Return
Say Gane "is an invalid selection!"

Exi t
Ret urn
/* ____________ */
/* Mainline */
/* ____________ */
Mai n:
/[* Pick 3 */
If Gane = 1 then do
Nunber1 = Randon{ 0, 9)
Nunber 2 = Randon{ 0, 9)
Nunber 3 = Randon{ 0, 9)

Say "The Pick3 nunbers | have selected are:",
Nurmber 1 Number 2 Numnber 3
End

/* PowerBall */
If Gane = 2 then do
Nunber 1 = Randon{1, 49)

Nunber 2 = Nunberl

Do Whil e Nunmber2 = Nunberl
Nunber 2 = Randon{ 1, 49)

End

Nunber 3 = Nunber 1

Do Wiile (Nunber3 = Nunmber1) | (Number3 = Nunber 2)
Nunber 3 = Randon{ 1, 49)

End

Nurber 4 = Nunber 1

Do Wiile (Nunber4 = Nunberl1) | (Number4 = Nunber?2) |

Page [238]

(Number 4 = Nunber 3)
Nunber 4 = Randon{ 1, 49)

End
Nurmber 5 = Nunber 1
Do Wiile (Nunber5 = Nunmber1) | (Nunmber5 = Nunber?2) | ,
(Number5 = Nunber3) | (Number5 = Nunber4)
Nunber5 = Randon{ 1, 49)

End
Nunber 6 = Randon{ 1, 42)

Say "The Powerball nunbers | have selected are:",
Nunber 1 Nunber2 Nunber 3 Nunber4 Nunber5 "PB: " Nunber 6
End

/* Show Me Five */
If Gane = 3 then do
Nunber 1 = Randon{ 1, 30)

Nunber 2 = Nunberl

Do Whil e Nunmber2 = Nunberl
Nunber 2 = Randon{ 1, 30)

End

Nunber 3 = Nunber 1

Do Wiile (Nunber3 = Number1) | (Number3 = Nunber 2)
Nunber 3 = Randon{ 1, 30)
End
Nurmber 4 = Nunber 1
Do Wiile (Nunber4 = Nunmberl1) | (Nunmber4 = Nunber2) | ,
(Number 4 = Nunber 3)
Nunber 4 = Randon{ 1, 30)
End
Nurmber 5 = Nunber 1
Do Wiile (Nunber5 = Nunmber1) | (Nunmber5 = Nunber2) | ,
(Number5 = Nunber3) | (Number5 = Nunber4)
Nunber5 = Randon{ 1, 30)

End
Say "The Show Me Five nunbers | have selected are:",
Nunber 1 Nunber 2 Nunber 3 Nunber4 Nunber5
End

Ret urn

Page [239]

ListDSI - List Dataset I nfor mation

/* ListDSlI - List Dataset information REXX */
Ar g Dat aset nane
RC = | i stdsi (dat aset nane)

If RC =
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say
Say

End

El se do
Say
Say
Say
Say

End

0 then do

"All ocati on was successful ."
" SYSAD r Bl k=" SYSADiI r Bl k
" SYSALLOC=" SYSALLCC

" SYSBLKSI ZE=" SYSBLKSI ZE
" SYSCr eat e=" SYSCr eat e

" SYSDSor g=" SYSDSCr g

" SYSDSNane=" SYSDSNane

" SYSEXxt ent s=" SYSExt ent s
" SYSExDat e=" Sy SExDat e

" SYSKEYLEN=" SYSKEYLEN

" SYSLRECL=" SYSLRECL

" SYSMenmber s=" SYSMenber s
" SYSPasswor d=" SYSPasswor d
" SYSPri mary="SYSPri mary
" SYSRef Dat e=" SYSRef Dat e
" SYSRACFA=" SYSRACFA

" SYSRECFM=" SYSRECFM

" SYSSeconds=" SYSSeconds
" SYSTr ksCyl =" SYSTr ksCyl
" SYSUni t =" SYSUni t
"SYSUni t s="SYSUni ts

" SYSUpdat ed=" SYSUpdat ed
" SYSUSED=" SYSUSED

" SYSVol une=" SYSVol une

"Return code =" RC

" SYSReason=" SYSReason

" SYSVMBGELVL1=" SYSMsgLvl 1
" SYSMBGELVL2=" SYSMsgLvVI 2

Page [240]

LPDSIX - List aPDSIndex to a Sequential File

This command will list the members of a PDS out to a sequential dataset for
subsequent editing.

/* LPDSI X - List a PDS Index to a Sequential File */

/* Witten by Dave G und */

Arg PDSNanme

Call ProcO1 /* Programlnitialization */

Call Proc02 /* List Menbers to an array */

Call Proc03 /* Create the sequential file array */

Cal | Proc99 /* Finalization */

Exi t

/* __ */
/* Cal | ed Procedures */
/* __ */
/* ____________ */

/* Program lnitialization */

/* ____________ */

ProcO1:

Say "LPDSI X - List a PDS Index to Sequential File"
Say "Proceeding..."

If PDSNane = '' then do
Say "PDSNanme not specified"
Exit(16)

End

Prefix = sysvar (SYSU D)

/* Say "The datasetnane is " PDSNane */

Return

[e e e */

/* List Menbers to an array */
[e e e */

Proc02:

TnStart = Time(S)
Say "Listing "PDSNanme" Menbers..."
Dunmmy = Qut Trap(" Menbers. ", "*")
"LI STD " PDSNane" M "
Dunmy = Qut Trap(" OFF")
NumMenbers = Menbers. 0
I f NumVenbers < 2 then do
Say "No nmenbers found: problenf"
Exit (16)
End
Adj Menbers = Numvenbers - 6 /* Don't count the first six blanks */
Say Adj Menbers PDSNane "nanes were found”
TnEnd = Tinme(S)
TnDur = TnEnd - Tnftart
Say "That took " TnDur "seconds!"

Return

%o * [

/* Create the sequential file array */
%o * [

Page [241]

Pr oc03:
Dol =1 to Numvenbers
Menbers. | = strip(Menbers. 1)
Oi gvermane = | eft(Menbers. |, 8)
End

OPDSN = "LPDSI X. Wr k"
Dunmry Qut Trap("Junk. ", "*")
/* Allocate the sequential output file */
Address TSO
"Del ete " OPDSN
"Free FI(SeqFil)"
Dunmy = Qut Trap(" OFF")
"ALLCC F(SeqFil) DA("OPDSN') NEW UN T(SYSDA) DSORG PS)",
" SPACE(45 45) Tracks LRECL(88) BLKSI ZE(6160) RECFMF, B)"

"EXECI O NumMvenbers ' DI SKW SeqFil (STEM Menbers. FIN S
"Free FI(SeqFil)"

Ret urn
/* ____________ */
/* Finalization */
/* ____________ */
Proc99:
Say OPDSN "created. LPDSI X conplete :)"
Ret urn

Page [242]

PROCSYMS - Perform Symbolic Substitution

/* ProcSyms - | SPF Edit Macro REXX EXEC */
/* Witten by Dave G und */
/* This macro is used to performsynbolic substitution on a set of */
/* JCL that calls a proc. */
/* 1) Put all synbolics fromthe PROC statement into an array */
/* 2) For testing, list the array */
/* 3) Copy the array to a change command array */
/* 4) Execute the change command array */

Address "I SREDI T" " MACRO PROCESS"
Address "I SREDI T"

Call ProcO1 /* Put Synmbs and Vals => arrays*/
Call Proc02 * List the arrays */
Call Proc03 * Create the change arrays */
/* | Proc04 */ * List the change arrays */
Call Proc05 * Execute the changes */
Exi t

/* ___________ */

/* ProcOl - Put all the synbolics and values fromthe PROC statement */
/* into arrays. */
/* ___________ */

ProcO1:

Address "I SREDI T"

"Exclude Al '//*" 1"

"Find ' PROC' Al NX'

"I SREdit (Nunfnd, Junk) = Fi nd_Counts"

If NunfFnd = O then do
zedsnsg = "' Not a PROC
zedlnsg = "I did not find a PROC statenent in this nenber”

Addr ess | SPExec
" SETMSG MSQE | SRZ000) "
Exit

End

zedsnsg "Too many"
zedl nsg "I found "NunfFnd" PROC statenents.”,
"I don't know how to process nore than one."
Addr ess | SPExec
" SETMSG M5 | SRZ000) "

If NunFnd > 1 then do

Exi t

End

/* At this point, we are looking at a line with the word ' PROC */
ProcLine = 'Y /* This is the PROC |ine */
"(CurrLine) = LINE .ZCSR' /* Read the line that the cursor is on */
CurrLine = left(CurrlLlne, 72) /* Drop off the sequence nunber*/
"I SREDI T (CLi neNo, x) = CURSOR /* save cursor position */
Say "The input line is "CurrLine

SymArray.0 = 0 ; ValArray.0 = 0 /* Init Symand Val ue arrays */
Next Ent = 0 /* Next array entry numnber */
Stillln ="Y /* Set continue processing sw */

Page [243]

Do while Stillln ="'Y

/* Parse the line into oper

ands */

Parse var CurrlLine Operandl Operand2 Qperand3 Operand4

Say " Operand 1="Cperandl
Say " Operand 2="Cper and2
Say " Oper and 3="Cper and3
Say " Oper and 4="Cper and4
If ProcLine ="'Y' then do /[* If this is the 'PROC Iine,
Par ams = Operand3 /* Paranms are operand 3
ProcLine = 'N
End
El se
Par ams = Oper and2 /* Parans are operand 2
Paranms = stri p(Parans)
If right(Parans,1) ="', then do /* end in comm?
LastLine = 'N [* Of ind: this is not |ast
Paranms = | eft(Parans, | ength(Parans)-1) /* Renove the comma
End
El se
LastLine = 'Y /* Set indicator
Do while | ength(Parans) > 0
Call ProcO1l1 /[* Cet the next Paraneter
End
If LastLine = "Y' then [* If this is the last |ine,
Stillln ="'N /* we are done
El se do /* otherw se
CLineNo = CLineNo + 1 /* Bunp |ine nunber
"(CurrLine) = LINE "CineNo /* Read the next |ine down
CurrLine = left(CurrlLlne, 72) /* Drop off the seq numnber
End
End
Return
/* ___________ */
/* Get the Next Synbolic Paraneter and Val ue */
/* ___________ */
Proc011:
/* First handle the Symbolic */
Pos = I ndex(Parans,'=") /* Point to the equals sign
If Pos = 0 then do /* No nore parans on this line
Params = "" /* Reduce the line to nothing
Return
End

Thi sSym = | ef t (Par ans, Pos- 1)

/*

Next Ent
SymAr r ay. Next Ent
SymArray. 0

Say "Trace:
NextEnt + 1

= Thi sSym
Next Ent

Thi sSyn¥" Thi sSym */

Paranms = Del Str(Parans, 1,1 engt h(Thi sSyn) +1)

/* Say "The remainder of the line is"

/*

Par amrs

| f

Now handl e t he val ue
Parans| | " "

| ef t (Parans, 1) t hen
Params = Del str(Parans, 1, 1)
EndPos | ndex(Parans, "' ")

Parans */
*/
/* Add a space, just in case
do /* Delimter is an apostrophe
/* Delete the first one

Page [244]

*/

*/

*/
*/

*/

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
/
/

*
*

If EndPos = 0 then do

Say "Problem No second apostrophe found; |ine=" Parans
Exi t
End
Params = Del str(Parans, EndPos, 1) /* Delete the second one
End
El se do
EndPos = | ndex(Parans,",")

If EndPos = 0 then EndPos = | ndex(Parans," ")
If EndPos = 0 then do

Say "Problem Data line is corrupted; |ine="Parans
Say " Lengt h of Parans="I| engt h(Par ans)
Exi t

End

End

Thi sVal = substr (Parans, 1, EndPos- 1)

/* Say "ThisVal ="ThisVval */

Paranms = Del Str(Parans, 1,1 engt h(Thi sVal) +1)
Val Array. Next Ent = Thi sVal

Val Array. 0 = Next Ent

Paranms = stri p(Parans)

Return
/* ___________ */
/* Proc02 - List the arrays */
/* ___________ */
Proc02:
Say " Synbolic| Val ue"
Dol =1 to SymArray. 0
ThisStr = left(SymArray.I||" ", 8)
ThisStr = ThisStr||" "
ThisStr = ThisStr|| Val Array. |
Say ThisStr
End
Return
/* ___________ */
/* Proc0O3 - Create the change arrays */
/* ___________ */
Pr oc03:
ChgArrayl.0 = 0 ; ChgArray2.0 = O;
Dol =1to SymArray. 0
/* Synbolics with the '." */
ChgArrayl.l = "Change '&&&&"SymArray.l".' ""Val Array. "'
/* Synbolics without the "." */
ChgArray2.1 = "Change ' &R&&"SymArray. "' '"Val Array. 1"’
End

ChgArrayl.0 = SymArray. 0 ; ChgArray2.0 = SynArray. 0
Return

/* ___________ */
/* Proc04 - List the Change Arrays */
/* ___________ */
Proc04:
Dol =1 to ChgArrayl.0
Say ChgArrayl. |
End
Dol =1 to ChgArray2.0
Say ChgArray?2. |
End

Page [245]

al l

al l

wor d"

*/

/* ___________ */
/* Proc05 - Execute the Change Arrays */
/* ___________ */
Pr oc05:
Address "I SREDI T"
Dol =1 to ChgArrayl.0
ChgArrayl. |
ChgArray?2. |
End

Not eLi ne",
address "I SREDI T* "LINE_AFTER O = Not eLi ne",

"'" Synbolic substitution performed | SPF macro ProcSyns.
address "I SREDI T* "LINE_AFTER O = Not eLi ne",

address "I SREDI T" "LI NE_AFTER O

Page [246]

PTS- PDSto-Sequential; member name s prefix

This exec will "flatten out" a PDS, adding the member name to the front of each

line. The result is written to a dataset for subsequent modification.

/* PTS - Copy a PDS to a sequential file, adding the */

/* menber name to the first 8 positions */

/* Witten by Dave G und */

Arg PDSNanme

Call ProcO1 /* Program lnitialization */

Call Proc02 * List Menbers to an array */

Call Proc03 * Create the sequential file array */

Call Proc04 * Wite the array to a dat aset */

Cal | Proc99 * Finalization */

Exi t
s
/* Cal | ed Procedures
s
/* ____________ */

/* Program lnitialization */

/* ____________ */

ProcO1:

Say "PTS - Copy PDS to Sequential "
Say "Proceeding..."

If PDSNane = '' then do
Say "PDSNanme not specified"
Exit (16)

End

Prefix = sysvar (SYSPREF)
If Prefix ="" then
Prefix = sysvar (SYSU D)

/* Foll ow TSO conventions. If the PDSNane has quotes renove them
If not, add the userid to the front */
If Left(PDSNane,1) = """ then do
QurLen = | engt h(PDSNane) - 2
PDSNane = substr (PDSNane, 2, Qur Len)

End
El se
PDSName = Prefix||"."|| PDSNane

/* Say "The datasetnane is " PDSNane */
Return
%o * [
/* List Menbers to an array */
%o * [
Proc02:

Say "Listing "PDSNanme" Menbers..."

Dunmmy = Qut Trap(" Menbers. ", "*")

“LI STD ' "PDSNane"' M"

Dunmy = Qut Trap(" OFF")

NumMenbers = Menbers. 0

I f NumVenbers < 2 then do
Say "No nmenbers found: problenf"
Exit(16)

Page [247]

End

Adj Menbers = Numvenbers - 6 /* Don't count the first six blanks */

Say Adj Menbers PDSNane "nanes were found”
Return

/* ____________ */
/* Create the sequential file array */
/* ____________ */
Proc03:
SeqgFi | eNuniines = 0
Dol =7 to Numvenbers
Menbers. | = strip(Menbers. 1)

Oi gvermane = | eft(Menbers. |, 8)

Memmane = stri p(Oi gMenmNane)

| nput DSN = "' " PDSNane" (" Memmane") "' "

/* Say "I nput DSN=" | nput DSN */

Addr ess TSO

"ALLCC DA("I nput DSN') F(1NDD) SHR REUSE"

"EXECIO * DISKR INDD (STEM REC. FIN S

' FREE F(1 NDD)'

Thi sMenNunLi nes = REC. 0

/* Say "Menber contains" Thi sMemNunli nes” |ines”

Do J = 1 to Thi sMemNunLi nes
Thi sLine = OrigMermNane || Rec.J
SeqFi | eNunii nes = SeqFi |l eNunii nes + 1
SeqArray. SeqFi | eNunLi nes = Thi sLi ne

End

End

/* Say 'The sequential file array contains' SeqFil eNunLi nes’
Return
%o * [
/* Wite the array to a dataset */
%o * [
Pr oc04:

OPDSN = "' "Prefix||"."|]| PTS. Work"""

Dunmry = Qut Trap("Junk.","*")

/* Allocate the sequential output file */
Addr ess TSO

"Del ete " OPDSN

"Free FI(SeqFil)"

Dunmy = Qut Trap(" OFF")

"ALLOC F(SeqFil) DA("OPDSN') NEW UNI T(SYSDA) DSORG(PS)",

i nes' */

" SPACE(45 45) Tracks LRECL(88) BLKSI ZE(6160) RECFMF, B)"

/* Now wite the array to the sequential output file */

"EXECI O SeqFil eNunlLi nes ' DI SKW SegFi| (STEM SeqArray. FIN S

"Free FI(SeqFil)"

Ret urn
/* ____________ */
/* Finalization */
/* ____________ */
Proc99:
Say OPDSN "created. PTS conplete :)"
Ret urn

Page [248]

PTS2 - PDS-to-Sequential; member nameisinserted

This exec will "flatten out" a PDS, inserting a line with the member name between

each member. The result is written to a dataset for subsequent modification.

/* PTS2 - Copy a PDS to a sequential file, adding the */

/* nmenber name between nenbers */

/* Witten by Dave G und */

Arg PDSNanme

Call ProcO1 /* Program lnitialization */

Call Proc02 * List Menbers to an array */

Call Proc03 * Create the sequential file array */

Call Proc04 * Wite the array to a dataset */

Cal | Proc99 * Finalization */

Exi t

/* __ */
/* Cal | ed Procedures */
/* __ */
/* ____________ */

/* Programlnitialization */

/* ____________ */

ProcO1:

Say "PTS2 - Copy PDS to Sequential”
Say "Proceeding..."

If PDSNane = '' then do
Say "PDSNanme not specified"
Exit(16)

End

Prefix = sysvar (SYSPREF)
If Prefix = "" then
Prefix = sysvar (SYSU D)

/* Foll ow TSO conventions. If the PDSNane has quotes renove them
If not, add the userid to the front */
If Left(PDSNane,1) = "'" then do
QurLen = | engt h(PDSNane) - 2
PDSNane = substr (PDSNane, 2, Qur Len)

End
El se
PDSNanme = Prefix||"."|| PDSNane

/* Say "The datasetnane is " PDSNane */
Return
%o * [
/* List Menbers to an array */
%o * [
Proc02:

Say "Listing "PDSNanme" Menbers..."

Dunmmy = Qut Trap(" Menbers. ", "*")

"LI STD ' "PDSNane"' M "

Dunmmy = Qut Trap(" OFF")

NurmMenbers = Menbers. 0

I f NumVenbers < 2 then do
Say "No nmenbers found: problenf"
Exit (16)

Page [249]

End

Adj Menbers = Numvenbers - 6 /* Don't count the first six blanks */
Say Adj Menbers PDSNane "nanes were found”

Return
/* ____________ */
/* Create the sequential file array */
/* ____________ */
Proc03:

SeqgFi | eNuniines = 0

Dol =7 to Numvenbers

Menbers. | = strip(Menbers. 1)

Oi gvermane = | eft(Menbers. |, 8)

Memmane = stri p(Oi gMenmNane)

| nput DSN = "' " PDSNane" (" Memmane") "' "

/* Say "I nput DSN=" | nput DSN */

Addr ess TSO

"ALLCC DA("I nput DSN') F(1NDD) SHR REUSE"
"EXECIO * DISKR INDD (STEM REC. FIN S

' FREE F(1 NDD)'

Thi sMenNunLi nes = REC. 0

/* Say "Menber contains" Thi sMenNunli nes”

/* First wite a record containing the nenber

SeqFi | eNunii nes = SeqFi |l eNunii nes + 1

SeqgArray. SeqFi | eNunlLines = "==" || OigMemNane ||

Do J = 1 to Thi sMenNunLi nes
Thi sLine = Rec.J

SeqFi | eNunii nes = SeqFi |l eNunii nes + 1

SeqArray. SeqFi | eNunLi nes = Thi sLi ne

End

End

/* Say 'The sequential file array contains'
Return
%o * [
/* Wite the array to a dataset */
%o * [
Pr oc04:

OPDSN = "' "Prefix||"."|]| PTS2. Wor k"""

Dunmry = Qut Trap("Junk.","*")

/* Allocate the sequential output file */

Addr ess TSO

"Del ete " OPDSN

"Free FI(SeqFil)"
Dunmy = Qut Trap(" OFF")

"ALLOC F(SeqFil) DA("OPDSN') NEW UNI T(SYSDA) DSORG(PS)",

/*

'EXECI O SeqFi | eNunli nes ' DI SKW SeqgFi |

SeqFi | eNunLi nes'

i nes' */

"SPACE(45 45) Tracks LRECL(80) BLKSI ZE(6160) RECFMF, B)"

Now wite the array to the sequential output file */
(STEM SeqArray. FIN'S

"Free FI(SeqFil)"

Ret urn

[e e e */
/* Finalization */
[e e e */
Proc99:

Say OPDSN "created. PTS2 conplete :)"

Page [250]

Ret urn

Page [251]

RexxModl - Rexx Exec M odel

Every toolbox should have a model from which to create a new program, be it
bare-bones, or chock-full of routines to weed through. Here is the former.

/* Pgm D - Program Function - Rexx Exec */
/* Witten by . . . */
/* This programwll... */
Arg Spec

Call Init /* Init Program
Exi t

[* e * [

/* Programlnitialization */

%o * [

I nit

Return

Page [252]

*/

Scale - Display a Scale

Thisis acode snippet that is handy for lining things up, when necessary.

Say ' 1 2 3 4 5 6'
Say '....5....0....5....0....5....0....5....0....5....0....5....0

Page [253]

SDN - Sorted Directory w/Notes. directory annotator

Thisis ahandy | SPF macro that | wrote to keep track of what | havein my PDSs.
This command will create and maintain a member called "@LIST", which contains a one-
liner about each member in the PDS. Hopefully, this member will always be the firstin a
PDS.

Unfortunately, this command can be invoked only while you are editing a member
of the PDS that you wish to annotate.

/* SDN - REXX EXEC */
* Sorted Directory w Notes - Edit Macro */
/* Witten by Dave G und */
* Changed 7/27/95- restore the TSO Profile prefix before | SPF */
* edit is invoked, instead of after the command is conplete */

ADDRESS " | SREDI T* " MACRO PROCESS"

| * o o o o o o o o eeeao s * [
/* Initialization */
/* ___ */
/* 1t's alnost inpossible to effectively handl e dat aset nanes whil e */
/* the TSO Profile Prefix is set to on. */
PREFI X = SYSVAR(SYSPREF) /* Get the Prefix */
If PREFI X = "" then DO /* prefix is not set */
PrefixOn =0 /* Set a switch for later */
end
el se Do
PrefixOn =1 /* Set a switch for later */
ADDRESS TSO
"Profile NoPrefix" /* Turn the prefix off */
end
/* ___ */
/* 1) Read @I ST fromcurrent pds */
/* ___ */

Address "I SREDI T" " (XDSN) =DATASET"
Dunmmy = Li st Dsi (XDSN)
I f SYSDSORG -= "PO' then do
Say "This dataset is not a PDS. No action perfornmed."

Exi t
end
| PDSN = "' "XDSN'(@1l ST) "' "
I f SYSdsn(IPDSN) = "OK" then
nop = nop
/* Say "The dsn is "I PDSN */
el se do /* Create @.ist with one nenber */
" NewsSt ack"
"Al'locate DD(FileA) DA("IPDSN') shr™
ARec = "@.I ST Thi s nenmber”
Push ARec
"ExeclO 1 DiskWFileA "
"ExeclO 0 DiskWFileA (Finis" /* Close the output file */
"Free DDNAME(FileA)"
end
/* "Free FI(OdFile)" */

Page [254]

"Allocate FI(AOdFile) DA("IPDSN') shr"

"ExeclO* DiskR O dFile (STEM Fil eARec. FIN S"
"Free FI(OdFile)"
/* Say FileARec.0 "Records read into the Fil eARec array"” */

| * o o o o o o o e e e e e e e e e e e e e e e e e e eeeao s * [
/[* 2) Get nmenber list of current PDS */
| * o o o o o o o eeeeao s * [

Dunmmy = Qut Trap("Fil eBRec.","*")

"LISTD " IPDSN " M

Dunmy = Qut Trap(" OFF")

/* Say FileBRec.0 "Records read into the FileBRec array” */

/* ListD has a problemwhen run fromw thin a REXX EXEC. */
/* 1t spits out two or three lines that it doesn't wite when */
/* running from outside of an EXEC. These lines start with the */
/* string "--MEMBER--". Find out where our list really starts, */
/* and save that record nunber for use later. */
FileBPos = 0 /* Initialize this value */
Dol =1to 15
If SubStr(FileBRec.1,1,11) = "--MEMBERS--" then do
FileBPos =1 + 1
Si gnal Done2
end
/* Say | FileBRec.l */
end

Done2: Nop=nop
If FileBPos = 0 then do
Say "Problemw th SDN EXEC at PO NT 1"

Exit(0)
end
0 * [
/* 3) Compare, and create the new @i st */
| * o o o o o o eeea s * [
OPDSN = "' "XDSN' (@l ST)" "
" NewsSt ack"

"Al'locate DD(FileC) DA("OPDSN') shr™
FileAPos = 1

/* FileBPos is set in section 2 above */
FileCPos = 1

Cet Bot h:
/* Get arecord fromFile A */
If FileAPos > Fil eARec. 0 then

Fi | eAKey = '99999999'

El se Do
Fil eAKey = SubStr(Fil eARec. Fi | eAPos, 1, 8)
ARec = SubStr(Fil eARec. Fi | eAPos, 1, 72)
Fil eAPos = Fil eAPos + 1

end

/* Say "The first record fromFileAis: " ARec */

/* Get arecord fromFile B */
If FileBPos > Fil eBRec.0 then

Fi | eBKey = '99999999'

El se Do
Fi |l eBKey = SubStr(Fil eBRec. Fi | eBPos, 3, 10)
BRec = SubStr (Fil eBRec. Fi | eBPos, 3, 72)

Page [255]

Fil eBPos = FileBPos + 1
END
/* Say "The first record fromFileBis: "
Conpar e:
If FileAKey < FileBKey then signal ALow
If FileBKey < FileAKey then signal BLow

/* Say "The record being conpared is " Fil eAKey Fil eBKey

/* Menber nanes are the sanme */
If FileAKey = "99999999" then
si gnal ECF

BRec */

CRec = SubStr(ARec,1,9)" "Substr(ARec, 11, 70)

/* Say "The record going out is " Crec
Push CRec

"ExeclO 1 DiskWFileC"

Si gnal Get Bot h

ALow.

*/

CRec = SubStr(ARec,1,9)"-"Substr (ARec, 11, 70)

Push CRec

"ExeclO 1 DskWFileC™

/* Get arecord fromFile A */
If FileAPos > Fil eARec. 0 then

Fi | eAKey = '99999999'

El se Do
Fil eAKey = SubStr(Fil eARec. Fi | eAPos, 1, 8)
ARec = SubStr(Fil eARec. Fi | eAPos, 1, 72)
Fil eAPos = FileAPos + 1

end

Si gnal Conpare

BLow:

CRec = SubStr(BRec, 1, 9)"+" Subst r (BRec, 11,
Push CRec

"ExeclO1 DskWFileC"

/* Get arecord fromFile B */

If FileBPos > Fil eBRec.0 then

70)

Fi | eBKey = '99999999'

El se Do
Fi |l eBKey = SubStr(Fil eBRec. Fi | eBPos, 3, 10)
BRec = SubStr (Fil eBRec. Fi | eBPos, 3, 72)
Fil eBPos = FileBPos + 1

END
Si gnal Conpare

ECF:
"Execl O 0 DiskWFileC (Finis"
"Free DDNAME(FileQ)"

*/

/* If the TSO Profile Prefix was set to on when we cane in,

[* it.

If PrefixOn = 1 then do
ADDRESS TSO
"Profile Prefix("PREFIX")" /*

end

ADDRESS " | SPEXEC' "EDI T Dat aset (" OPDSN')

Page [256]

Restore it

/* Close the output file */

restore

/* W& cane in with the setting

/* Both files are at end-of-file */

*/
*/

*/

SHOWDUPS - Show Duplicates

This exec is an | SPF macro that will show all duplicated linesin a dataset.

/* ShowbDups - Show Duplicate Lines - REXX Exec */

/* Witten by Dave G und */

ADDRESS | SREDI T

' MACRO (begcol endcol)’

If Begcol ="7?" then do
zedsnsg = ' Showbup begcol , endcol
zedl nsg = ' Command synt ax: Showbup begi nning col, ending col
signal quitne

end
nuncheck = DATATYPE(begcol , N) /* Determine if any parms have */
I f NunCheck /= 1 then BegCol =1 /* been passed. */

nuncheck = DATATYPE(endcol , N)
If NunCheck /=1 then "ISREDIT (endcol) = LRECL

"ISREDIT (currline)
"ISREDIT (lastline)
"ISREDIT (cl,cc)
DupCnt =0
"I SREDI T EXCLUDE ALL'
Do currline =1 to lastline - 1
"ISREDIT (linel) = LINE currline
linel = substr(linel, begcol, (endcol - begcol) + 1)
nextline = currline + 1
"ISREDIT (line2) = LINE nextline /* get next record */

LI NENUM . ZFI RST* /* save starting record # */
LI NENUM . ZLAST' /* save ending record # */
CURSOR /* save cursor position */

line2 = substr(line2, begcol, (endcol - begcol) + 1)
If linel == line2 then do
DupCnt = DupCnt + 1
"ISREDIT LABEL " currline " = A"
"I SREDI T LABEL " nextline " = .B"
"1 SREDI T RESET EXCLUDED . A .B"
end
end
zedsnsg = DupCnt ' DUPS FOUND
zedl nsg = DupCnt 'duplicate Iines were detected
Qi t re:

ADDRESS | SPEXEC
' SETMSG MsE | SRZ000) '
EXITO

Page [257]

Stack - Start another 1 SPF session

Thisisahandy Rexx exec that, while you are in an ISPF session, will start another
one. The action istotally recursive.

[* Stack - Start Another |SPF Session - Rexx Exec */

/* Witten by Dave G und */

/* This programw ||l start another |SPF session so you don't have to
back out of everything you have when you want another w ndow. */

Addr ess | SPExec
"Sel ect Panel (I SR@rim™"

Page [258]

TimeFmts - Show all time for mats

/* TimeFnts - Tinme Formats - Rexx EXEC */
/* Witten by Dave G und */

Say "Date()" Date()
Say "Date(B)" Date(B)
Say "Date(C)" Date(CQ
Say "Date(D)" Date(D)
Say "Date(E)" Date(E)
Say "Date(J)" Date(J)
Say "Date(M" Date(M
Say "Date(O" Date(O
Say "Date(S)" Date(S)
Say "Date(U)" Date(U)
Say "Date(W" Date(W

Say "Time()" Time()
Say "Time(Q" Time(Q
Say "Time(H" Tinme(H
Say "Tinme(L)" Time(L)
Say "Time(M" Time(M
Say "Time(N" Tinme(N)
Say "Time(R)" Ti me(R)
Say "Tinme(S)" Time(S)

Page [259]

TimeT oGo - Display time until an event

This exec can be used to display how much time remains until a certin event. This
can be pretty informative and useful on a Friday afternoon at about 2:00.

/* TimeToGo - Rexx EXEC */

/* Witten by Dave G und */

/* This is a Rexx |learning exercise. Its purpose is to */
/* cal cul ate how much tine remains to a specific event */
TargetHH = 16 /* Set these to the */

Target VMM = 00 /* event */

Target SS = 00 /[* tinme */

Tar get Seconds = (TargetHH * 60 * 60) + (TargetMM * 60) + TargetSS
Ti meNow = Tine(N)

Ti meNowHH = | ef t (Ti neNow, 2)

Ti meNowMM = substr (Ti meNow, 4, 2)

Ti meNowSS = ri ght (Ti meNow, 2)

SecondsNow = (Ti meNowHH * 60 * 60) + (Ti meNowMM * 60) + Ti meNowSS

SecondsLeft = Target Seconds - SecondsNow
/* Say "SecondsLeft = " SecondsLeft */

Ti meToGoHH = trunc(SecondsLeft / 3600)
SecondsLeft = SecondsLeft - (Ti meToGoHH * 3600)

Ti meToGoMM = trunc(SecondsLeft / 60)
SecondsLeft = SecondsLeft - (Ti mreToGoMM * 60)
Ti meToGoSS = SecondsLeft

/* Now format the time so we don't get sonmething like 7:7:4 */
If TimeToGoSS < 10 then

Ti reToGoSS = '0' || Ti meToGoSS
If TimeToGoMM < 10 t hen
Ti reToGoMM = ' 0" || Ti neToGoMM

If TimeToGoHH > 0 then

Say "Tine to Go: "Ti meToGoHH": " Ti mreToGoMM' : " Ti neToGoSS
El se

Say "Tine to Go: "Ti meToGoMM' : " Ti meToGoSS

Page [260]

Section |V - The Rexx Environment

Page [261]

This section of the manual describes the following Rexx features:
1. Establishing your Rexx environment

2. Using Rexx with | SPF

3. Using Rexx in the background (batch jobs)

4. Debugging your Rexx program

5. Trapping Errors

6. Examples

Page [262]

Establishing your Rexx environment
This procedure has gone through severa variations.

Previoudly, you had to research to see what was currently allocated to SY SPROC
(for Clists) or SY SEXEC (for Rexx execs). Then you had to free the DDName, alocate
your exec library to SY SPROC, and then reallocate all of the system libraries that were
previously allocated to it. The problem with this was that if the system administrators
responsible for the concatenation of your procedure libraries changed the list of files
allocated to that DDName, you would not have that new list available to you.

Some shops started to write their logon procedures so you could pass it the name
of alibrary that you wanted to alocate in front of (or in back of) the list of system exec or
clist libraries. There was alot of room for error in this method.

IBM has supplied us with a solution to thisdilemna. It is called ALTLIB.

Now, to establish your own personal Rexx exec library (alibrary from which al of
your execs will be called), perform the following steps:
Create a PDSE whose last level is EXEC.
Y ou can create a PDSE through I1SPF 3.2, then option M. Y ou can also use the following

command:

Addr ess TSO

"Free Fi (NEVWDA)"

"del et e REXX. EXEC'

"Al'l oc Fi (NEWDA) DA(REXX. EXEC) new space(15 1) dir(1l) track" ,
"DSNType(Li brary)" ,
"dsorg(PO recfm F b) lrecl (80) blksize(0)"

"Free Fi (NEVWDA)"

Populate that PDSE with your execs

Then, whenever you log on to TSO,

Allocate DDName SY SUEXEC to that newly-created library
"Alloc Fi (SYSUEXEC) DA(REXX. EXEC) SHR'

- Issuethe ALTLIB command.
"ALTLI B Activate User(exec)"

Page [263]

Using Rexx with | SPF

Y ou can invoke the | SPF editor or browser from within a Rexx exec. Furthermore,
you can run a Rexx exec upon beginning the edit of a dataset. Thisfeatureiscaled an
| SPF edit macro.

| SPF Browser

To browse a dataset from within a Rexx exec:
ADDRESS "| SPEXEC' " BROWSE Dat aset (dsn)"

where

dsn is the datasetname of the file you wish to browse

| SPF Editor

To edit a dataset from within a Rexx exec:
ADDRESS " | SPEXEC' "EDI T Dat aset (dsn) Macro(macnane)"”

where

dsn is the datasetname of the file you wish to edit
machame is the name of the |SPF Rexx exec that will function as the | SPF
macro.

| SPF Edit Macros
The purpose of an ISPF edit macro is to perform one or more | SPF edit commands
on adataset immediately after opening it for edit. If you need to do something to a dataset
after it is opened for edit, an edit macro may be the way to accomplish this.

A complete dissertation of |SPF edit macros is beyond the scope of this book, but
| provide enough to at least let you know how they are used in conjunction with Rexx.

An ISPF edit macro can be used to reformat or restructure data in a dataset prior
to the dataset being presented to the user for editing.

Thefirst linein an ISPF macro is one to tell the Rexx exec that it is to function as
an 1SPF macro:
Address "I SREDI T* "Macro Process".

Just about any |SPF editor primary command can be used in an | SPF macro.
Simply precede the command with Addr ess " | SREDI T".

Thisis an example of an | SPF macro that is used to edit the output of the TSO

command LI STA SY ST (seethe"LA" exec in the examples):
/* REXX - LAE - Edit nmacro for LA - Rexx Exec */
/* Witten by Dave Gund, April 7, 1995 */

1 ADDRESS "I SREDI T " MACRO PROCESS"
2 ADDRESS "| SREDI T" "EXCLUDE ALL -- DDNAME 1"

Page [264]

3 ADDRESS "| SREDI T* " EXCLUDE ALL ' keep' 1 "
4 ADDRESS "| SREDI T* "Del ete ALL X'
5 ADDRESS "I SREDI T* "C 'KEEP' '=-------------- " word all 12"

Line 1 tells the Exec that it is an | SPF macro.

Line 2 isan ISPF command that excludes al lines where - - DDNAME" appears in column
1.

Line 3 isan |SPF command that does the same thing with a different character string.

Line 4 tells ISPF to delete all excluded lines (those that were excluded by the previous two
lines)

Line 5 tells ISPF to change the all occurrences of the string "KEEP" that start in column
12 to 14 dashes.

Page [265]

Using Rexx in the background (batch jobs)

Aslong as your Rexx exec is not interactive, you should have no problem running
it in the background, that is, viaajob you submit from your terminal.

A good candidate for a Rexx exec that should run in the background is one that
will take alot of CPU time, or produce a lot of output. By running it in the background,
you can free up your terminal to do other things.

Instead of allocating files from within your Rexx exec, you would allocate them via
the JCL. Y ou could keep the allocations buried within your Rexx exec, but then you will
be hiding the datasetname from your user. Unless thisis what you specifically want to do,
put the DD statement for that file in the JCL, and remove the allocate step from your Rexx
exec.

An example of JCL for running a Rexx exec in the background is shown:
/| STEP010 EXEC PGMVEI KJEFTO1
// SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EXEC ' GRUNDDAV. REXX. EXEC(TEST1) "
/ *

O WNPEF

Note that this JCL can be used for executing any TSO command, not just Rexx execs.
Line 1 executes program IKJEFTO1, which is the background TSO command processor.
Line 2 allocates the TSO SY SOUT dataset.

Line 3 alocates the TSO SY SIN dataset

Line 4 executes the TSO command. In this case, it's an exec from my exec PDS.

(Line 5 issimply the JES end-of-data statement.)

Page [266]

Debugging your Rexx program

If your program operates in a manner that doesn't seem quite right, and the cause
isnot immediately evident, it is probably time to go into debugging mode. Debugging is
the process of putting code into your program to make your program tell you whereit is,
what it is about to do, or what it has done.

Typicaly, you would not leave any "active”" debugging code in your production
program. Instead of deleting it, you could comment it out, but if there istoo much, it
could detract from the readability of the program.

There are several ways to debug a Rexx exec.

Oneway isto put "Say" statements in strategic locations. Thiswill tell you what
paths the program is taking. Along this same line is commenting out instructions that you
suspect to be causing the problems.

Another way is to use the Rexx Trace facilities.

| have always used the first method, because it is ssimpler, easier to "unplug"”, and
gave me the same end result. The second method can hammer you with output that can
serve more to confuse you than to help you. And to top it off, | think the Rexx Trace
facilities are alittle complicated. But it still warrants a short discussion, so hereitis.

To interrupt your Rexx program from running, pressthe ATTN, or PA1 key. The
program will break out of its current processing, and if there is code left to execute, the

following will be displayed:
ENTER H TO END, A NULL LINE TO CONTI NUE, OR AN | MVEDI ATE COMVAND+ -

Y ou have severa options for a response:

1) Enter key- The program will continue running

2) HI (Halt Interpret)- The program will end.

3) HT (Halt Typing)- The program will stop displaying output.

4) RT (Resume Typing)- The program will resume displaying output
5) TS (Trace Start)- Rexx will enter Interactive Trace Mode

6) TE (Trace End)- Rexx will exit Interactive Trace Mode

I nteractive Trace Mode
Interactive Trace Mode is where Rexx will display each of the lines as it executes
them, prefixed by the line numbers. When it pauses for input, you can change the value of
avariable, or hit Enter to continue processing.

Page [267]

Trapping Errors

Trapping Errorsis the process of detecting certain program conditions, and then
acting based on those conditions.

Thisfacility may be used in debugging, but can also be used in a production
program (but carefully).

Error-trapping instructions:

Signa On condition

Signa Off condition

Call On condition Name subroutinename

Signal On condition
Thisinstruction will effect atransfer of control to a designated location in the
program whenever a certain condition is detected by the program. After the condition is
handled, the program terminates.

Signal Off condition
Thisinstruction will cancel the effects of a Signal On for this particular condition
only.

Call On condition Name subroutinename
This instruction will cause the program to perform a call to subroutine every time
the program detects a certain condition. After the condition is handled, the subroutine
returns control to the next sequential instruction iun the program. The subroutine cannot
return any values.
Naming a subroutine is optional.

Condition

The condition cited in the above instructions can be one of the following:
1. Syntax- Rexx encountered a syntax error in an instruction.
2. Error - A TSO or ISPF command returned a non-zero return code
3. Fallure- A command that was passed to the environment has failed
4. NoVaue- A variable was never given avaue. Typicaly, thisis not an error, because
Rexx, by default, treats an unassigned variable as a literal.
5. Halt- The PAL/Attn key was hit.

Page [268]

Examples
The following Rexx exec will be used in each of the examples. For each example, the
"Main processing” section of the program will be different.

/* Rexx programto denonstrate error-trapping */
Si gnal On Synt ax

Cal | On Error Nane Error_Handl er

Cal | On Failure

Si gnal On NoVval ue

Signal On Halt

(Main processing section)

Exi t
Type:
Synt ax:
Say "I amin the Syntax condition-handling routine now"
Say "l amgoing to term nate the program because of this"
Exi t
Error_Handl er:
Say "I amin the Error condition-handling routine now"
Say "l amgoing to continue processing"
Return
Fai | ure:
Say "I amin the Failure condition-handling routine now "
Say "l amgoing to continue processing"
Return
NoVal ue:
Say "I amin the NoVal ue condition-handling routine now "
Say "l amgoing to term nate the program because of this"
Exi t
Hal t:
Say "I amin the Halt condi tion-handling routine now. "
Say "l think you hit the attention key!"
Say "I amgoing to term nate the program because of this"
Exi t

The following illustrates the output from running the above Rexx exec, causing different
conditions to occur. We do this by replacing the "main processing section” .

Page [269]

Example 1
Main processing section:
Say "1) This statement is perfect, and will generate no errors."”
Say "2) The next statenent will generate a Syntax condition”
Pl = 3.1416
Crcunference = Pl *

Displays:

1) This statenent is perfect, and will generate no errors.
2) The next statenent will generate a Syntax condition

I amin the Syntax condition-handling routine now

| amgoing to term nate the program because of this

Example 2
Main processing section:
Say "3) The next statenent will generate a Error condition"
"Del ete junk.data.set"

Displays:

3) The next statement will generate a Error condition

ERROR QUALI FYI NG XCON620. JUNK. DATA. SET

** DEFAULT SERVI CE ROUTI NE ERROR CODE 20, LOCATE ERROR CODE 8
LASTCC=8

| amin the Error condition-handling routine now

| am going to continue processing

(The dataset did not exist)

Example 3
Main processing section:
Say "4) The next statenent will generate a Failure condition”
"This is not a good conmand”

Displays:
4) The next statement will generate a Failure condition
COMVAND THI'S NOT FOUND
10 *-* "This is not a good comrand"
+++ RC(-3) +++
I amin the Failure condition-handling routine now.
I am going to continue processing

Page [270]

Example 4
Main processing section:
Say "5) The next statenent will generate a NoVal ue condition”
Say "My age is " MyAge

Displays:

5) The next statenent will generate a NoVal ue condition
I amin the NoVal ue condition-handling routine now.

| amgoing to term nate the program because of this

Page [271]

Appendix

Rexx instructions

Address If Options Return
Arg Interpret Parse Say
Cal Iterate Procedure Select
Do Leave Pull Signd
Drop Nop Push Trace
Exit Numeric Queue Upper

Rexx functions

Abbrev C2X Fuzz Reverse Vaue

Abs Datatype Index Right Verify
Address Date Insert Sign Word

Arg DBCS Justify Sourceline Wordl ndex
Bitand Delstr LastPos Space WordL ength
Bitor Delword Left Strip WordPos
Bitxor Digits Length Substr Words
B2X D2C Linesize Subword XRange
Center D2X Max Symbol X2C
Centre ErrorText Min Time X2D
Compare Externds Overlay Trace

Condition Find Pos Trandate

Copies Form Queued Trunc

C2D Format Random Userid

TSO External functions

ListDSI Storage
Msg SYSDSN
OutTrap SysVar
Prompt

TSO commands

Del Stack HI QBuf SubCom
DropBuf HT QElem TE
ExeclO MakeBuf QStack TS
ExecUtil NewStack RT

Page [272]

Other Rexx References
The MV 'S QuickRef documentation (on TSO) also contains extensive technical

documentation on Rexx (available only in some shops). This feature is commonly available
viathe *QW” command.

Book Manager is available in many shops:

Bookshelf: IKJ2BIO1 - TSO/E V2R4 REXX/MV S Reference
Book name: IKJ2A303 TSO/E V2R4 REXX/MV S Reference
Book name: IKJ2C305 TSO/E V2R4 REXX/MV S User's Guide

Page [273]

The End

Page [274]

